
This is the author’s version of the work. It is posted for your personal use. Not for redistribution. The definitive version was published in Companion of the 2023
ACM/SPEC International Conference on Performance Engineering (ICPE ’23 Companion), April 15–19, 2023, Coimbra, Portugal, 2023, doi: 10.1145/3578245.3584853.

dqualizer: Domain-Centric RuntimeQuality Analysis
of Business-Critical Application Systems

Sebastian Frank
University of Hamburg
Hamburg, Germany

sebastian.frank@uni-hamburg.de

Julian Brott
University of Hamburg
Hamburg, Germany

julian.brott@uni-hamburg.de

Dominik Kesim
University of Stuttgart
Stuttgart, Germany

Heiko Holz
Novatec Consulting GmbH

Leinfelden-Echterdingen, Germany
University of Education Ludwigsburg

Ludwigsburg, Germany
heiko.holz@novatec-gmbh.de

Matthias Eschhold
Novatec Consulting GmbH

Leinfelden-Echterdingen, Germany
matthias.eschhold@novatec-

gmbh.de

André van Hoorn
University of Hamburg
Hamburg, Germany

andre.van.hoorn@uni-hamburg.de

ABSTRACT
The runtime quality of application systems— e.g., performance, re-
liability, and resilience—directly influences companies’ business
success. Over the last few years, corresponding analysis measures
such as load tests or monitoring have become widespread in prac-
tice, and mature commercial and open-source tools have been de-
veloped. However, these measures are all at the technical level and
not interpreted at the (business) domain level. At the same time,
software architecture and software development approaches such
as Domain-Driven Design (DDD), which are becoming increasingly
widespread, essentially do not consider runtime quality concerns
despite their criticality.

Our envisioned dqualizer approach aims to close the gap between
the domain-specificity of application systems and the (technical)
measures and findings of quality assurance utilizing a domain-
centric approach. For this purpose, we integrate means to model
and monitor runtime quality metrics into DDD-based techniques,
e.g., Domain Story Telling, that enable domain experts to describe
domain-centric runtime quality concerns. Our preliminary results
comprise the prototypical extension of a domain story editor for
specifying load and resilience tests and reporting test results. Us-
ing the editor, we gathered feedback from domain experts in a
qualitative user study. Despite the editor’s limitations regarding
functionality and usability, the feedback indicated that domain
experts are able to model runtime quality analyses.

CCS CONCEPTS
• Software and its engineering→ Software performance; Soft-
ware fault tolerance; • Applied computing→ Service-oriented
architectures; Business process monitoring.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0072-9/23/04. . . $15.00
https://doi.org/10.1145/3578245.3584853

KEYWORDS
domain-driven design, domain story telling, runtime quality
ACM Reference Format:
Sebastian Frank, Julian Brott, Dominik Kesim, Heiko Holz, Matthias Es-
chhold, and André van Hoorn. 2023. dqualizer: Domain-Centric Runtime
Quality Analysis of Business-Critical Application Systems. In Companion
of the 2023 ACM/SPEC International Conference on Performance Engineering
(ICPE ’23 Companion), April 15–19, 2023, Coimbra, Portugal. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3578245.3584853

1 INTRODUCTION
Domain-driven Design (DDD) techniques [25] foster communica-
tion between domain and technical experts and focus on developing
systems according to the needs of the business domain. Since to-
day’s application landscapes become larger and more complex as
the number of users increases, more flexible architectural styles,
such as microservices, and suitable landscapes, such as DDD, are
needed. Conclusively, the runtime quality of application systems—
e.g., performance and resilience— becomes more critical as the
impact of these attributes increases with use. Over the last few
years, corresponding analysis measures such as load [16] and re-
silience tests [2] have become widespread in practice, and mature
commercial and open-source tools have been developed.

When using these analysis measures, developers, for example,
are interested in specific methods’ response times to optimize exe-
cution times. In contrast, domain experts are interested in domain-
related metrics, such as the number of products sold in a specific
domain. However, DDD techniques only focus on functionality and
do not consider runtime qualities, despite their criticality. Thus,
analysis measures are still located and interpreted at the technical

 Translate into technical question

 Translate the analysis resultMeasures

Domain
View

Technical
View

Domain
Expert DevOps

De

rive

Question

Domain

Te
ch

ni
ca

l
An

al
ys

is

Figure 1: The dqualizer vision: Domain experts can state
questions and interpret analysis results on the domain level.

https://doi.org/10.1145/3578245.3584853
https://doi.org/10.1145/3578245.3584853
https://orcid.org/0000-0002-3068-1172
https://orcid.org/0000-0002-6253-3908
https://orcid.org/0000-0002-3609-1624
https://orcid.org/0000-0002-5211-2181
https://orcid.org/0000-0002-5307-4906
https://orcid.org/0000-0003-2567-6077
https://doi.org/10.1145/3578245.3584853
https://doi.org/10.1145/3578245.3584853

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Sebastian Frank, Julian Brott, Dominik Kesim, Heiko Holz, Matthias Eschhold, and André van Hoorn

level. Hence, technical data must be translated between the techni-
cal and the business metric levels, which poses a major challenge.

With the dqualizer approach presented in this paper, we envision
closing the gap between the domain-specificity of application sys-
tems and the (technical) measures and findings of quality assurance
utilizing a domain-centric approach shown in Figure 1. Domain
experts’ questions are mapped to technical, executable tests. Vice
versa, dqualizer translates the analysis results into a representation
understandable for domain experts. The approach integrates means
to model and monitor runtime quality metrics into DDD-based
techniques that enable domain experts to describe domain-centric
runtime quality concerns. Subsequently, the dqualizer approach
intends to gather the relevant metrics with open-source tools and
aggregate the analysis results on the domain level.

As a first step, we extend an existing editor for domain sto-
ries [27] to support the annotation of domain elements to specify
Runtime Quality Analysis (RQA) tests. We base the format of the
required data on a well-known quality scenario format [3] and
use terminology and explanations suitable for non-technical stake-
holders. We derive the RQA test inputs from the established load
testing tool JMeter [24] and the resilience engineering tool Chaos
Toolkit [6]. The editor prototype presents RQA results in a text-
based report similar to the work by Okanović et al. [22].

We conducted a qualitative user study in which four domain
experts from industry had to solve four tasks on a modified cinema
application example [13]. The participants’ performance in solving
the tasks and feedback provided in a questionnaire indicate that
domain experts are able to specify RQA tests using our approach.
However, the usability of the editor still needs to be improved.

To summarize, this work makes the following contributions:

• A presentation of dqualizer’s vision, concept, and compo-
nents for domain-driven specification and comprehension
of RQA tests

• The prototypical editor and the underlying concept for an-
notating domain stories

• The results and lessons learned from the user study that eval-
uates the capabilities of the editor and dqualizer approach

2 BACKGROUND
2.1 Domain-Driven Design
Domain-driven Design (DDD) [25] is a holistic architecture and
development approach for software systems in technically complex
business domains. The domain determines the architectural deci-
sions of a software system and is, therefore, always the top priority
for developers, architects, and business experts. The collaboratively
developed ubiquitous language supports their communication.

Domain Storytelling (DST) [13] is a method for analyzing and ex-
ploring the domain. It is conducted interactively in workshops and
relies on communication between all stakeholders, who identify
important business events, business processes, necessary neighbor-
ing systems, and technical terms. DST is a collaborative modeling
technique that emphasizes transforming domain knowledge into
software by telling and visualizing stories about the problem do-
main [13]. The goal is a mutual domain model that is maintained
throughout the life cycle of the system [7].

E-Ticket

E-Ticket

Theater

Cashier

Guest

E-Ticket Staff App

shows

.01
to

returns

.03

to

opens

.04
for

withvalidates

.02

Figure 2: Modified Entrance Control story of the Arthouse
cinema example [13]

Hofer and Schwentner [13] suggest using a simple pictographic
language to avoid complex notations or interactions inherent to
formal modeling languages. This notation allows a simple repre-
sentation of people, their activities, and business processes. The
DST language consists of three element types, i.e., actors, work ob-
jects, and activities. Actors are a story’s protagonists and can be
persons, groups, or software systems. Actors always play an active
role in a domain story and have a label describing their role. Actors
create, use, or exchange work objects, e.g., documents, things, and
digital objects. Actors and work objects are connected by arrows
called activities. Activities are always verbs in the domain language,
whereas actors and work objects are nouns. Domain stories can be
modeled using a tool, e.g., the WPS Domain Story Modeler [27].

Figure 2 shows a domain story based on the Arthouse cinema
example [13]. We modified the example in our work to represent
a digital workflow that involves an application. In this example,
the guest, the cashier, and the Staff App are actors. The elements e-
ticket and theater are work objects. The arrows labeled with shows,
returns, opens, and validates are the activities. Thus, we can read the
domain story as follows: “The guest shows the e-ticket to the cashier.
Next, the cashier validates the e-ticket with the cinema’s Staff App.
After the e-ticket has been successfully validated, the cashier returns
the e-ticket to the guest and opens the theater.”

2.2 Runtime Quality Analysis
Dqualizer focuses on quantifiable runtime quality properties — par-
ticularly performance and resilience—which must be considered
over the entire software life cycle, i.e., from requirements, through
architecture and implementation to testing, and operation [4]. Re-
quirements can be expressed, e.g., using quality scenarios [3].

Application Performance Monitoring (APM) assists developers
and stakeholders in continuously monitoring a system’s runtime
behavior and identifying deviations in quality characteristics [12].
APM involves interdependent activities that may be executed con-
currently, namely (1) data collection, (2) data storage and processing,
(3) data presentation, and (4) data interpretation and use.

Load testing [16] is a process to gain information on a system’s
capability to fulfill its functional and non-functional properties
under specific conditions to uncover problems. It emerged as an
addition to functional testing approaches to ensure that systems
meet their quality requirements by observing their behavior in a
given environment. In general, load testing requires three steps,
i.e., (1) load design, (2) execution, and (3) analysis. JMeter [24] is an
example of a state-of-the-art load testing tool.

dqualizer: Domain-Centric RuntimeQuality Analysis of Business-Critical Application Systems ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

Resilience describes a system’s capability to recover from condi-
tions that cause deviations from the system’s normal state [26]. As
such, resilience is a measurable metric related to other dependabil-
ity metrics, e.g., reliability and fault tolerance. Testing resilience
requires preparation and a well-designed testing strategy. Common
practices for resilience testing are fault-injections [14] and chaos
experiments [2]. Both strategies aim to test different dependability
metrics, such as resilience, but differ in methodology. In traditional
fault-injection approaches, the injection engine injects the fault
into the hardware or software layer to investigate a system’s de-
pendability measures in a test environment. Chaos experiments
can be, for example, automated using the Chaos Toolkit [6].

3 RELATEDWORK
DDD, as introduced by Evans [7], and DST [13] do not include prac-
tices for domain-centric modeling of quality requirements. Evans
[7] uses annotations to describe quality properties as business rules.
Hofer and Schwentner [13] use similar annotations to describe ad-
ditional properties of domain story elements, but not related to
quality. Both annotation types lack a well-defined formalism for
modeling domain-centric quality requirements.

Perillo et al. [23] provide a solution that uses annotations to cre-
ate more detailed domain model descriptions for Java-based applica-
tions. However, their solution is entirely technical and uses Unified
Modeling Language (UML) diagrams to describe domain models,
even in DDD contexts. In contrast to dqualizer, this approach disre-
gards quality requirements in its annotations and domain model.

Quality annotations are also common to other modeling ap-
proaches, such as UML [21]. For instance, the MARTE profile [10]
extends UML with performance and availability annotations. Al-
though MARTE uses a formal language focusing on quality require-
ments, it does not describe its properties from a domain perspective.
While MARTE allows separating the domain model from its imple-
mentation, formal specifications do not fit into the DDD landscape
as they lack the expressiveness of a ubiquitous language.

Le et al. [19] propose a domain-specific language (DSL) that
extends UML classes with additional domain properties. However,
no solution is available to transform the annotated model into RQA
tests. This would require more specific details like the workload
type, or experiment setting that domain experts typically can not
provide. Therefore, extensive communication between technical
and domain experts is still necessary to create RQA tests.

In summary, related works either lack a focus on domain models
or testable quality specifications. Thus, the concerns of domain
experts regarding runtime quality can not be sufficiently considered.

4 DQUALIZER APPROACH
4.1 Objective and Overview
The dqualizer approach aims to close the gap between the busi-
ness domain and technology through an innovative approach for
domain-centric RQA of business-critical application systems. We
hypothesize that DDD is suitable for performing RQA for domain-
specific questions. In summary, dqualizer’s primary objectives are
i) definition and interpretation of questions regarding runtime qual-
ity at the domain level and ii) translation of runtime quality issues

Domain
Expert DevOps

Runtime Analysis
of the target system

Monitoring

Load Test

Resilience Test

Workshop

dqtranslator

dqcockpit dqedit

dqexecdqanalyzer

dqlang

Domain Analysis
Description

Domain-Technical
Translation

Technical Analysis
Description

Domain
Analysis Result

Technical
Analysis Result

LEGEND

Figure 3: Overview of dqualizer’s envisioned architecture

and results between business and technical domains using a map-
ping— as illustrated in Figure 1. While we focus on the domain
experts’ perspective, we emphasize that technical experts (e.g., Dev-
Ops engineers) can also state questions regarding the domain, e.g.,
whether a service is involved in critical business processes.

Besides its primary goals, dqualizer must also be able to deal
with several challenges. Due to their flexibility, a microservice-
based system’s architecture will likely experience frequent changes,
which can (partially) invalidate the initial mapping. Thus, dqualizer
aims to detect and report mismatches between the mapping and
the architecture. Furthermore, techniques for a (semi-)automatic
mapping extraction from monitoring data should reduce the effort
in handling such situations and providing an initial mapping. In
addition, dqualizer also aims to provide assistance or at least limited
functionality in not ideal-typical situations, i.e., where industry
applications have not been designed using DDD with APM in place.

Figure 3 depicts the dqualizer architecture with the components
and the connections to existing RQA tools. DDD-based modeling
languages and workshop-based techniques, such as event storm-
ing and DST, are to be extended in dqualizer to support domain
questions regarding runtime qualities. At the same time, the results
of the technical quality analysis— i.e., monitoring as well as load
and resilience tests— are to be adequately represented at the do-
main level so that domain experts can evaluate the results. In the
dqualizer architecture (see Figure 3), this is implemented by a lan-
guage (dqlang), a mapping editor (dqedit), an analysis configurator
(dqanalyzer), and a dashboard for result interpretation (dqcockpit).

To link DDD and technical quality analyses, dqualizer requires
a mapping model and transformations that enable the translation
between the business and technical levels as well as the associated
quality scenarios and analyses. This is realized by the central trans-
lator (dqtranslator) and the analysis execution (dqexec). We aim to
publish the dqualizer tooling under an open-source license.

4.2 dqualizer Components
4.2.1 dqanalyzer. The dqanalyzer component enables domain ex-
perts to specify and perform RQA without profound knowledge
of the underlying technical infrastructure and analysis tools such
as JMeter [24]. For example, the question “Can a contract be pro-
cessed within 3 s even under high load” could be answered with load
tests. The dqanalyzer user input concept is based on the ubiquitous
language domain experts are familiar with. Thus, this component

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Sebastian Frank, Julian Brott, Dominik Kesim, Heiko Holz, Matthias Eschhold, and André van Hoorn

subsumes the extensions to existing DDD techniques, e.g., the ex-
tended domain story editor presented in Section 5.1. Our extensions
aim to hide technical details that domain experts can not provide.

However, due to the technical complexity of the stated domain
questions, RQA must be performed at the technical level. Thus, the
domain-specific question entered by the domain experts must be
translated by the dqtranslator component.

4.2.2 dqedit. The dqedit component is the editor for the mapping
necessary to translate domain questions to actual RQA. The editor
can be used during DDD-based workshops, e.g., for event storm-
ing or DST, where the domain elements are identified and defined.
Technical experts must then provide the necessary implementation
details, e.g., which services represent certain actors. Furthermore,
the technical experts must provide default values for inputs kept
abstract on the domain level, e.g., the number of requests for a “nor-
mal” workload. Thus, dqedit enables DevOps engineers to translate
domain questions to RQA tests and technical metrics.

4.2.3 dqlang. Processing inputs and specifications from various
domains requires a generic language model. Domain-driven archi-
tecture and development approaches such as DDD already provide
the domain-motivated and technology-neutral ubiquitous language,
which is reflected in the communication between domain experts
and DevOps as well as in the software architecture. DDD-based
modeling languages and workshop-based techniques, such as event
storming and DST, will be extended in dqualizer to support ques-
tions regarding RQA. The dqlang is a collection of languages uti-
lized by dqualizer e.g., the DST extension for domain-level RQA
specification or the language for defining mappings in dqedit.

4.2.4 dqtranslator. Dqtranslator assures consistent information
processing despite differing language models. From the input per-
spective, domain-specific analysis descriptions from dqanalyzer and
technical technology requirements from dqedit are processed and
translated to the generic dqlang model. This allows dqualizer to use
a consistent language autonomous from domain-specific charac-
teristics internally. To output data to users, the analysis results are
translated from the dqlang model back to the domain-specific input
language initially provided via dqanalyzer. This enables dqualizer
users to perform input specification and output interpretation in a
uniform language model they are familiar with.

4.2.5 dqexec. The dqexec component executes the analysis re-
quests specified in the dqanalyzer component. The specification is
received in the generic format of dqlang and then mapped to the
input model of the external analysis tooling. For APM analysis, we
plan to support open-source tools1, e.g., inspectIT and Kieker. Load
tests can, for instance, be executed with JMeter and resilience tests,
e.g., with Chaos Toolkit. Further third-party analysis and test tools
can be integrated by providing an appropriate mapping from dqlang
to the tool’s input and output models. Besides delegating the RQA
execution, dqexec is also responsible for choosing the most appro-
priate analysis tool, repeating tests to reach a certain accuracy, and
enriching the tests with tool-specific default values. We envision
dqexec to deliver preliminary results for long-running RQA, e.g.,
by utilizing (fast) simulations before executing experiments.

1https://openapm.io/

4.2.6 dqcockpit. Dqcockpit is a dashboard visualizing the results
of executed RQAs. The results are translated from dqlang to the
appropriate domain-specific language to enable the user to interpret
the data without prior knowledge of the toolset used by dqexec.
Finally, dqcockpit offers a management overview dashboard that
displays the current system state based on automatically extracted
analysis data which is translated to the domain level.

5 PRELIMINARY RESULTS
In this section, we present the extended domain story modeler and
outline a user study conducted to evaluate our initial dqualizer con-
cept. Further details are available as supplementary material [17].

5.1 Extended Domain Story Modeler
We extended the existing Domain Story Modeler [27] to act as the
front-end of the dqualizer approach for domain experts, i.e., they can
use it to express domain questions, trigger RQAs, and investigate
the results. Thus, the extended modeler represents the component
dqanalyzer and partially dqcockpit. Since other components of the
dqualizer approach still need to be implemented, the approach is
not fully executable. However, the extended modeler allows the
early evaluation of concepts for dqualizer in user studies.

Figure 4 shows the extended modeler’s workflow comprising
(i) annotating domain story elements, (ii) specifying RQA tests, and
(iii) investigating results. These steps are detailed in the following.

5.1.1 Annotation-based Modeling. We use annotations to specify
RQA tests in domain stories. An annotation creates a relationship
between the annotated element and the information declared in
the annotation, e.g., as in other modeling languages such as UML
profiles. We separate the annotation into two components: (i) the
view where domain experts define the RQA test and determine
the content of the annotation, and (ii) the visual reference that
distinguishes annotated elements from other elements.

First, the domain expert selects an element in a domain story
(see Figure 4 (A)) for adding a RQA test annotation. Then, a context
menu (see Figure 4 (B)) shows RQA test types available for the
selected element. The developed prototype currently supports load
and resilience tests. In the future, the dqualizer mapping rules could
restrict the availability of RQA tests on elements. However, the
prototype does not support this function as the dqtranslator has
not been implemented yet. Next, the Graphical User Interface (GUI)
opens a separate view (see Figure 4 (C)) for specifying the RQA test.

When the domain expert saves the RQA test, the modeler checks
the annotation for completeness. As a visual reference, a red border
line surrounds incomplete annotations if the annotation misses
mandatory information. Otherwise, a green border line indicates a
completed annotation (see Figure 4 (D)).

5.1.2 RQA Test Specification. We need additional information to
execute RQA tests with tools like JMeter and ChaosToolkit. Our
prototype outputs a data model using the Javascript Object Notation
(JSON) format for further processing in dqualizer. As a general
structure of our data model, we use the quality scenario description
template [3]. This allows us to describe the content of RQA tests in
a well-established structure using four predetermined keywords,
i.e., artifact, stimulus, environment, and response measure.

 https://openapm.io/

dqualizer: Domain-Centric RuntimeQuality Analysis of Business-Critical Application Systems ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

A

B

C

E

D

Figure 4: Workflow of our prototype showing (A) the Ticket Sales story in the editor, (B) the context menu to annotate elements,
(C) the view for specifying resilience tests, (D) the test status, and (E) the view displaying the analysis result.

Throughout our concept and prototype implementation, we aim
to hide technical complexity from domain experts to reduce the cog-
nitive load and increase usability. Thus, for technical terms, we use
alternate terminology more suitable for non-technical stakeholders.
As indicated by the question marks in Figure 4 (C), we also provide
help texts to assist domain experts in understanding the requested
information. We do not request exact threshold values for quality
metrics since domain experts usually have difficulties providing
them. Instead, we use Apdex levels [1] that describe the meaning
of the values, e.g., that the user is “satisfied” (see Figure 4 (C4)).
The values associated with the levels in the prototype are examples
and must be chosen according to the domain. In future versions of
dqualizer, technical experts can provide the fitting values.

We have gathered evidence that domain experts do not know
how long a RQA should take to achieve reliable results. Therefore,
we use the term confidence (accuracy in earlier versions) with a
value between 0% a 100% for all tests. Other dqualizer services must
determine a suitable duration based on the confidence value.

Our prototype currently implements data models and views to
describe resilience and load tests in a uniform manner.

Resilience Test Specifications. We derive the required inputs for a
resilience RQA test in dqualizer from the required inputs of chaos
experiments [2] in ChaosToolkit as shown in Table 1. Figure 4 (C)
shows how the inputs are displayed in the GUI. The annotated
element is automatically assigned as the artifact (C1).

The experiment type in stimulus (C2) can either be Failed request,
Late response, or Unavailable. These three options are the most used
in ChaosToolkit for application-level fault injections [18]. Currently,
we do not consider infrastructure or network injections, as they
require technical information not available in domain stories.

The response measure (C4) comprises Response time, Recovery
time, and Error rate. We use the Apdex levels Satisfied, Tolerated,

Table 1: Mapping the inputs of Chaos-Toolkit-based re-
silience tests to our terminology and the scenario keywords

ChaosToolkit Alt. Terminology Scenario Keyword

fault type type

stimulusfault repetition occurrence
injection type injection type

duration confidence

target service artifact artifact

execution context environment environment

steady-state-hypothesis response measure response measure

and Frustrated from the example provided by the Apdex Users
Group [1] for response times and recovery rates. The Error rates
object is separated into the three Apdex levels Low, Medium, and
High. We defined Medium as below 5%. The occurrence (C5) deter-
mines how often the stimulus triggers against the artifact. At this
point, we opted for two choices, i.e., once and more than once. The
environment (C7) differentiates between Production and Testing. In
testing environments, we apply the standard approach in resilience
testing to use data from the production environment that reflects
user behaviors between regular and post office hours [2].

Load Test Specifications. We map the terminology of JMeter [24]
to scenario keywords and provide an alternative terminology as
shown in Table 2. We assign two JMeter concepts to the stimu-
lus, i.e., the sampler, and loop count. The sampler requires more
configuration as there are many different samplers, e.g., Hypertext
Transport Protocol (HTTP). Currently, we consider HTTP samplers
only, but future versions of dqualizer may add more types.

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Sebastian Frank, Julian Brott, Dominik Kesim, Heiko Holz, Matthias Eschhold, and André van Hoorn

Table 2: Mapping the inputs of JMeter-based resilience tests
to our terminology and scenario keywords

JMeter Alt. Terminology Scenario Keyword

sampler sampling type stimulusloop count confidence

endpoint artifact artifact

number of threads base load / highest load environmentramp-up growth rate

assertion response measure response measure

The environment describes the load profile. Currently, the proto-
type differentiates between the load types load peak and continuous
load. Both types are common workload patterns [8] occurring in
many other contexts, such as Cloud Computing. Further, we as-
sign the concepts number of threads and the ramp-up time to the
keyword environment. The term highest load applies for changes in
the workload after a dedicated time frame derived from the growth
rate. The term base load only applies when the workload does not
change during the load test. The terms confidence and artifact are
equivalent to the ones in the resilience data model. The baseLoad
is divided into three Apdex Levels, i.e., Low, Medium, and High.
Similarly, the highest load is expressed using the three Apdex levels
Very High, Extremely High,Dangerously High. As of now, theGrowth
rate can take three values, i.e., Linear, Cubic, and Quadratic.

We assigned the concept of an endpoint to the artifact and as-
signed the assertion rules to the response measure. The response
measure comprises the response time and the optional result metric.
The latter describes a range of metrics that may be included in
the analysis results report. We have included the metrics response
times and two percentiles, i.e., the 90th and the 95th percentile.

5.1.3 RQA Test Result Presentation. For displaying the results of the
RQA tests, we need to ensure that the report is understandable and
contains enough information to make the result comprehensible
to domain experts. Tools such as Grafana2 display data in graph-
like visualizations. However, domain experts may not have the
necessary knowledge to derive conclusions from these reports.

We base our concept for reporting analysis results on the report
generator by Okanović et al. [22]. Thus, our result report (see Fig-
ure 4 (E)) consists of two components. The first component is a
summary statement (E1) which summarizes the details of the RQA.
If we consider that the execution of one or more RQA tests can
take several hours or days, domain experts may have forgotten
details about the tests. Therefore, the summary allows domain ex-
perts to get an overview of the previously modeled RQA test at one
glance. The second component is the conclusion statement (E2),
which includes details of the executed RQA test in natural language.
Thus, the report enables domain experts to understand the relation-
ship between the response measure and the result. The conclusion
statement also summarizes a test run as either successful or failed.

2https://grafana.com/

Since our concept allows the execution of multiple RQAs, multi-
ple analysis results can be displayed simultaneously. For this pur-
pose, the report view is separated by the headlines Resilience Test
Results and Load Test Results. Currently, there are no backend ser-
vices that can provide analysis data. Therefore, we prepared a set
of possible result descriptions for the expert evaluation to illustrate
the concept.

5.2 Qualitative User Study
We conducted a qualitative user study to evaluate the modeler’s ca-
pabilities in supporting domain experts in specifying RQA tests and
to gather feedback regarding the further development of dqualizer
tooling. The research questions are formulated as follows:

RQ1: How well does the proposed modeling concept improve
the currently implemented processes of domain experts to model
RQA tests on the domain level?

RQ2: Are domain experts capable of giving the information
we need for modeling RQA tests on the domain level within our
proposed modeling concept?

RQ3: How well can domain experts model their business ques-
tions within our proposed modeling concept?

RQ4: How understandable is the representation of specification
elements for modeling resilience and load tests within our proposed
modeling concept?

RQ5: How understandable is the representation of RQA results
within our proposed modeling concept?

5.2.1 Method. We are unaware of other established solutions fo-
cusing on modeling non-functional requirements in the context
of DDD and DST. It is thus infeasible to compare our approach to
existing solutions in a quantitative evaluation design. Greenberg
and Buxton [9] argue that quantitative study designs may even be
harmful to evaluating novel ideas, especially during the prototype
design, by creating circumstances that constrain the experts’ subjec-
tive feedback. Therefore, the most feasible approach to validate our
concept and answer the stated research questions is to ask domain
experts for their judgment in a qualitative user study.

Isenberg et al. [15] also state that in evaluation contexts that
require domain experts, there is no need for generality but rather
for transferring the needs of these domain experts to people with
similar knowledge and needs. In such circumstances, Isenberg et al.
[15] argue that four participants are enough to yield valuable results.
Therefore, we invited four experts from two companies to partic-
ipate in the evaluation. Two participants work in the insurance
domain, and two in the taxing domain.

During the evaluation, the participants received a set of tasks
that they needed to solve with the assistance of our prototype. We
defined the tasks for the fictional domain Arthouse cinema provided
by Hofer and Schwentner [13] so that participants did not need
to provide their own. After the participants completed the tasks,
we asked them to fill out a questionnaire to gather feedback and
ask for details about the participants’ observations. The question-
naire consists of 39 questions [17] and encourages the participants
to report missing features, problems, and missing information in
single-choice questions using a 5-point Likert scale [20] and free
text. Some questions are based on the System Usability Scale [5].

https://grafana.com/

dqualizer: Domain-Centric RuntimeQuality Analysis of Business-Critical Application Systems ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

5.2.2 Tasks. We briefly explained the Arthouse cinema domain
which was the tasks’ basis. Hofer and Schwentner [13] do not pro-
vide any architectural documentation that complements the domain
stories. Therefore, we created a simplified component diagram and
a fictional scenario to give participants more context [17].

We created four tasks that each had to be solved by the partici-
pants within 10 minutes. We designed the tasks to be independent
of each other. The tasks focus on different features of the prototype.
Task 1 requires creating a resilience test to verify that an error rate
is below 5% in the Ticket Sales domain story. Task 2 requires creat-
ing a load test in which the response time stays tolerable. Task 3
asks the participants to create a resilience test with simulated load
tests. Task 4 is an open task where the participants have to phrase
a business question of their choice for the domain story Entrance
Control. Task 4 intends to find pitfalls and misleading design choices
in modeling a business question for an observed domain. To provide
a more realistic use case, we derived the tasks’ business questions
from an example business question collected in a previous work-
shop. This example includes a concrete metric threshold for error
rates of 5%, which we also used in the tasks. The tasks 1–4 help to
answer the research questions RQ1, RQ4, and RQ5. Task 4 is also
mandatory to find an answer to RQ3.

5.2.3 Procedure. We conducted the interviews remotely on Mi-
crosoft Teams. The participants received a document that contained
additional information and instructions for preparing the proto-
type locally on their machines. The instructions were sent to the
participants more than three days before their scheduled interview.

The interviews consisted of three parts. In part one, we explained
the procedure and invited the participants to ask questions. In part
two, we provided the task description, waited five minutes for the
participants to read it, and answered their questions. Then, we
proceeded to the solving of the four tasks. After each task, we
asked questions about the participants’ solutions before presenting
the correct solution and discussing any deviations. After each task,
we asked the participants if the test was successful, the quality
threshold was satisfied, and why the test did (not) succeed. Finally,
we asked the participants to answer the questionnaire.

5.2.4 Results.

RQ1. In the questionnaire, the participants rated with a median
value of 3.5 out of 5 that they feel confident to use the prototype in
their work. The participants also agreed that the prototype is easy
to use, with a median of four. However, there are still improvements
necessary to increase usability. The participants stated the need for
(i) more extensive documentation regarding the test parameters,
(ii) extensive tool demonstration examples, (iii) the possibility to
change the tool’s language, (iv) a way to provide actual values
instead of the predefined values.

RQ2. During the evaluation, we did not observe that domain ex-
perts were unable to provide the information required for modeling
resilience and load tests. The participants’ answers indicated that
they did not miss any features. However, some reported problems
understanding some of the information, particularly for modeling
resilience tests. Most of the feedback from the participants included
the lack of precision in providing response measures. We assumed
that domain experts should work solely with labeled levels, e.g.,

“high”, using the Apdex measurement index. However, even a small
indication of the exact values for the response measure would in-
crease the understandability of modeled RQA tests.

RQ3. After working on task 4, the participants agreed with a
median of 4.0 out of 5 that they did not miss any features. Neverthe-
less, the participants mentioned several times that they would like
more control over specifying the response measures, e.g., the load
design, by providing exact percentage values. Furthermore, one
participant wanted to include a value for availability in a resilience
test. We observed a lack of interaction between resilience tests and
load tests, i.e., the prototype does not connect them to simulate
load behavior for resilience tests. In task 4, we noticed that almost
all participants modeled the business questions similarly to each
other. One participant stated that it is difficult to think of a business
question in such a short time.

In the open feedback, two participants explicitly stated that the
approach would be a valuable progression toward a solution that
allows meaningful modeling of runtime analysis tests. One of them
appreciated that it would allow having everything in one place, i.e.,
the modeled test, the domain story, and the analysis results.

RQ4. We noticed that almost every participant had read through
the information texts several times before deciding on the modeling
specification. The participants voiced critical feedback regarding the
understandability of the fields Response Measure, How often should
the stimulus occur, and Should the users be affected by the stimulus.
However, all participants agreed (4 or 5) that they understood the
requested information for modeling resilience and load tests, except
for one participant on load testing. While modeling the load tests,
the participants had difficulties understanding the load peak design
and the checkboxes for including the Result metrics. In these cases,
the information texts helped the participants to decide. Moreover,
we have noticed that most participants mistakenly interpreted the
accuracy as another term for availability or p-value expressing
statistical significance.

RQ5. The participants agreed with a median of 3.5 out of 5 that
the analysis results were rather understandable. Moreover, we also
received positive feedback regarding the summary of their modeled
test in the analysis results. The participants could identify whether
the test was successful but could not explain why. Only in some
cases did the analysis results include example values regarding the
measured response times. According to the participants’ feedback, a
detailed summary of key facts for a test run would be better suited.

The participants also stated that the textual summary is irritating
and difficult to read. Another issue is that the summary suggests
an interpretation made by the application, tempting the domain
experts not to make interpretations themselves. Most participants
stated that this could cause false beliefs about the application.

6 DISCUSSION
In the following, we summarize the lessons learned from the user
study and discuss the threats to the study’s validity.

6.1 Lessons Learned
• Domain experts can model their business questions easily
and are able to provide the required information within our

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Sebastian Frank, Julian Brott, Dominik Kesim, Heiko Holz, Matthias Eschhold, and André van Hoorn

modeling concept. However, the understandability of the
information and information fields needs to be improved.

• The representation of the RQA results within our proposed
concept is understandable from the point of view of a domain
expert, although the results are missing detailed information
with regard to the test runs. In addition, a more compact and
structured representation compared to prose text is needed.

• Another issue is that the prototype currently allows model-
ing resilience and load tests on each element of the domain
story. This may not be meaningful in the context of DST
as it would not make sense to model any type of test on a
particular domain story element.

• It turned out that the Apdex ratings alone are insufficient to
make decisions towards specifying the response measures.
Therefore, we need to complement it with custom values
and actual reference values to help domain experts to get a
better understanding of the individual information fields.

• We are limited by design decisions in the existing Domain
Story Modeler, e.g., technically, we can not identify elements
displayed in a domain story. Therefore, revising the exist-
ing modeler or developing a new modeler is necessary to
overcome some of the aforementioned limitations.

6.2 Validity Concerns
In this first evaluation, we have identified three validity concerns.
The selection of participants may have influenced the results, as
three of them participated in a previous dqualizer requirements
workshop. The participants’ experience with our modeling concept
and idea may result in a bias toward our prototype. However, the
interviewed experts can also evaluate the satisfaction of their re-
quirements best, which is vital in a first evaluation. Nonetheless,
we have to ensure the validity of future evaluations.

Further, our questionnaire may not provide enough value for
our research questions. We have compensated for this using the
NASA-TLX [11] as a guideline for creating our questionnaire and
based it on questions from similar published qualitative studies.

Lastly, the tasks may not reflect the use cases of domain ex-
perts. However, we designed the closed tasks based on real business
questions and metrics from previous workshops. Furthermore, we
reduced this risk by creating an open modeling task, where domain
experts must specify their own RQA test.

7 CONCLUSION
This work introduced the dqualizer approach and its envisioned
components for enabling domain experts to specify and interpret
RQA tests using Domain-Driven Design techniques. Our editor
prototype allows domain experts to specify RQA tests by annotating
elements in domain stories and presents the results as text-based
reports. As indicated by the results of a qualitative user study,
domain experts are able to successfully specify RQA tests using
the editor. However, feedback regarding usability and functionality
needs to be considered in further development.

In future work, we plan to develop and evaluate further dqualizer
concepts and components, e.g., mapping and test generation. We
also aim to extend and reevaluate the editor’s usability and func-
tionality. Particularly, we plan to supplement the Apdex levels with

actual values, revise the result presentation, add support for speci-
fying more complex tests spanning multiple domain elements, and
utilize mapping information to limit actions on domain elements.

ACKNOWLEDGMENTS
This research was supported by the Federal Ministry of Education
and Research (BMBF), grant number 01IS22007A/B.

REFERENCES
[1] Apdex Users Group 2023. Apdex Performance Index. https://www.apdex.org.
[2] Ali Basiri, Niosha Behnam, Ruud de Rooij, Lorin Hochstein, Luke Kosewski,

Justin Reynolds, and Casey Rosenthal. 2016. Chaos Engineering. IEEE Software
33, 3 (2016), 35–41.

[3] Len Bass, Paul Clements, and Rick Kazman. 2021. Software Architecture in Practice
(4 ed.). Addison-Wesley Longman Publishing Co., Inc., USA.

[4] André B Bondi. 2014. Foundations of software and system performance engineer-
ing: process, performance modeling, requirements, testing, scalability, and practice.
Pearson Education.

[5] John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability evaluation
in industry 189, 194 (1996), 4–7.

[6] Chaos Toolkit Team. 2023. ChaosToolkit. https://chaostoolkit.org
[7] Eric Evans. 2004. Domain-driven design: tackling complexity in the heart of software.

Addison-Wesley.
[8] Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and Peter

Arbitter. 2014. Cloud computing patterns: fundamentals to design, build, and
manage cloud applications. Springer.

[9] Saul Greenberg and Bill Buxton. 2008. Usability evaluation considered harmful
(some of the time). In Proceedings of the SIGCHI conference on Human factors in
computing systems. ACM, 111–120.

[10] Object Management Group. 2019. UML Profile for MARTE: Modeling and Analy-
sis of Real-Time Embedded Systems. https://omg.org/spec/MARTE/1.2/PDF

[11] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research. In Advances in psy-
chology. Vol. 52. Elsevier, 139–183.

[12] Christoph Heger, André van Hoorn, Mario Mann, and Dušan Okanović. 2017. Ap-
plication performance management: State of the art and challenges for the future.
In Proceedings of the 8th ACM/SPEC on International Conference on Performance
Engineering. ACM, 429–432.

[13] Stefan Hofer and Henning Schwentner. 2021. Domain Storytelling: A Collaborative,
Visual, and Agile Way to Build Domain-Driven Software. Addison-Wesley.

[14] Mei-Chen Hsueh, Timothy K Tsai, and Ravishankar K Iyer. 1997. Fault injection
techniques and tools. Computer 30, 4 (1997), 75–82.

[15] Tobias Isenberg, Petra Isenberg, Jian Chen, Michael Sedlmair, and Torsten Möller.
2013. A systematic review on the practice of evaluating visualization. IEEE
Transactions on Visualization and Computer Graphics 19, 12 (2013), 2818–2827.

[16] Zhen Ming Jiang and Ahmed E Hassan. 2015. A survey on load testing of large-
scale software systems. IEEE Transactions on Software Engineering 41, 11 (2015),
1091–1118.

[17] Dominik Kesim. 2023. Supplementary Material. https://doi.org/10.5281/zenodo.
7651402

[18] Dominik Kesim, André van Hoorn, Sebastian Frank, and Matthias Häussler. 2020.
Identifying and prioritizing chaos experiments by using established risk analysis
techniques. In 2020 IEEE 31st International Symposium on Software Reliability
Engineering (ISSRE). IEEE, IEEE, 229–240.

[19] Duc Minh Le, Duc-Hanh Dang, and Viet-Ha Nguyen. 2018. On domain driven
design using annotation-based domain specific language. Computer Languages,
Systems & Structures 54 (2018), 199–235.

[20] Rensis Likert. 1932. A technique for the measurement of attitudes. Archives of
psychology (1932).

[21] Object Management Group. 2017. Unified Modelling Language Specification.
(2017). https://www.omg.org/spec/UML/

[22] Dušan Okanović, André van Hoorn, Christoph Zorn, Fabian Beck, Vincenzo
Ferme, and Jürgen Walter. 2019. Concern-driven reporting of software per-
formance analysis results. In Companion of the 2019 ACM/SPEC International
Conference on Performance Engineering. ACM, 1–4.

[23] José Roberto C Perillo, Eduardo M Guerra, and Clovis T Fernandes. 2009. Daileon:
a tool for enabling domain annotations. In Proceedings of the Workshop on AOP
and Meta-Data for Software Evolution. ACM, 1–4.

[24] The Apache Software Foundation. 2019. JMeter. https://jmeter.apache.org
[25] Vaughn Vernon. 2016. Domain-driven design distilled. Addison-Wesley.
[26] Marco Vieira, Katinka Wolter, Alberto Avritzer, and Aad van Moorsel. 2012.

Resilience Assessment and Evaluation of Computing Systems. Springer Science &
Business Media, 2012.

[27] WPS 2023. WPS Domain Story Modeler. https://egon.io/.

https://www.apdex.org
https://chaostoolkit.org
https://omg.org/spec/MARTE/1.2/PDF
https://doi.org/10.5281/zenodo.7651402
https://doi.org/10.5281/zenodo.7651402
https://www.omg.org/spec/UML/
https://jmeter.apache.org

	Abstract
	1 Introduction
	2 Background
	2.1 Domain-Driven Design
	2.2 Runtime Quality Analysis

	3 Related Work
	4 dqualizer Approach
	4.1 Objective and Overview
	4.2 dqualizer Components

	5 Preliminary Results
	5.1 Extended Domain Story Modeler
	5.2 Qualitative User Study

	6 Discussion
	6.1 Lessons Learned
	6.2 Validity Concerns

	7 Conclusion
	Acknowledgments
	References

