
Supporting and Verifying Transient Behavior Specifications in Chaos

Engineering [Extended Abstract]

Denis Zahariev
University of Stuttgart, Stuttgart

Sebastian Frank
sebastian.frank@uni-hamburg.de
University of Hamburg, Hamburg

Alireza Hakamian
mir-alireza.hakamian@iste.uni-stuttgart.de

University of Stuttgart, Stuttgart

André van Hoorn
andre.van.hoorn@uni-hamburg.de
University of Hamburg, Hamburg

1 Context and Problem

Chaos Engineering [2] is an approach for assessing
the resilience of software systems, i.e., their ability
to withstand unexpected events, adapt accordingly,
and continue providing functionality. An integral part
of the approach is continuous experimentation, ex-
pressed in continuously executing so-called Chaos Ex-
periments. When applied, the traditional Chaos En-
gineering approach only verifies whether the system is
in a steady state without providing information about
the time between the state changes, e.g., the recovery
of the system. The experimentation process concep-
tually does not allow the specification of hypotheses
regarding the transient behavior, i.e., the behavior ex-
perienced during the transition between steady states
after a failure has been injected.

2 Objective

Our goal is to study how the Chaos Engineering pro-
cess can include verification of transient behavior re-
quirements. We aim to extend the Chaos Engineering
approach and tooling to support the specification of
transient behavior hypotheses and their verification.
Moreover, we also aim to provide assistance to the
actual users of our extended Chaos Engineering ap-
proach and make the tooling compatible with our ex-
isting approaches for resilience assessment [7]. Thus,
we evaluate our approach regarding the correctness in
and outside of Chaos Experiments.

3 Method

We extend the Chaos Experiment process with a tran-
sient behavior specification using formalisms such as
Metric Temporal Logic (MTL) and Property Speci-
fication Patterns (PSP) [1]. Consequently, we study
the inclusion of runtime verification into the Chaos
Experimentation process. Based on a comparison
of state-of-the-art Chaos Engineering tools, we select
Chaos Toolkit [6] for a prototypical extension. Fur-
thermore, we conducted interviews with three Chaos

Engineering experts and practitioners. To create the
extended Chaos Engineering approach, we combined
the requirements elicited during the interviews into a
concept, which is then implemented into a prototype.

We conduct the correctness evaluation with data
provided by a benchmark generator for MTL moni-
toring tools [3] using the past and future MTL for-
mulas of PSPs. We execute chaos experiments on a
simplified testing system representing an actual indus-
try system and use our approach to verify transient
behavior specifications. Finally, we run simulations
of chaos experiments using our simulator MiSim [5],
which is designed for resilience assessment, and use
our approach to verify transient behavior specifica-
tions based on MiSim’s outputs.

4 Result

The primary outcome of this work is an approach
and a browser-based tool that provides assistance in
specifying transient behavior, creating chaos experi-
ment specifications for Chaos Toolkit, and verifying
the transient behavior against retrieved monitoring
data. Furthermore, it has basic capabilities for the
visualization of results.

The tool can correctly verify all the 160 specifica-
tions in the benchmark, covering four different PSPs
with four different scopes, positive and negative out-
comes, as well as future and past MTL formulas. Fur-
thermore, the tool correctly verified our created tran-
sient behavior specifications in data collected from
three chaos experiments and one simulation run.

5 Talk Outline and Additional Re-
sources

In our talk, we will present our approach and tool
for verifying transient behavior specifications in Chaos
Engineering. In addition, we will elaborate on selected
results from our experiments. Since the project is em-
bedded into a research endeavor already presented at
SSP21 [4], we will also outline the role of this work



in the ongoing endeavor. Thus, we will show prelimi-
nary concepts and outcomes of follow-up works, e.g.,
regarding the optimization of verified requirements.

6 Acknowledgments

The authors thank the German Federal Ministry
of Education and Research (dqualizer project and
Software Campus 2.0—Microproject: DiSpel, FKZ:
01IS17051) for supporting this work.

References

[1] M. Autili et al. “Aligning qualitative, real-
time, and probabilistic property specification
patterns using a structured english grammar”. In:
IEEE Transactions on Software Engineering 41.7
(2015), pp. 620–638.

[2] A. Basiri et al. “Chaos Engineering”. In: IEEE
Software 33 (Jan. 2016), pp. 1–1.

[3] D. Ulus. “Timescales: A benchmark generator for
MTL monitoring tools”. In: International Con-
ference on Runtime Verification. Springer. 2019,
pp. 402–412.

[4] S. Frank et al. “Scenario-Based Elicitation, Spec-
ification, and Comprehension of Transient Soft-
ware Behavior”. In: SSP 2021 (2021).

[5] L. Wagner et al. “MiSim—A Lightweight and
Extensible Simulator for a Scenario-Based Re-
silience Evaluation of Microservice Architec-
tures”. In: SSP 2021 (2021).

[6] Chaos Toolkit. 2022. url: https://github.com/
chaostoolkit.

[7] S. Frank et al. “Interactive Elicitation of Re-
silience Scenarios Based on Hazard Analysis
Techniques”. In: Lecture Notes in Computer Sci-
ence. Vol. 13365. (ECSA’21 post-proceedings; in
press). Springer, 2022.

https://github.com/chaostoolkit
https://github.com/chaostoolkit

	Context and Problem
	Objective
	Method
	Result
	Talk Outline and Additional Resources
	Acknowledgments

