
Extracting Software Architectures from Traces for the Simulation of

Microservice-based Architectures [Extended Abstract]

Tim Thüring
University of Stuttgart, Stuttgart

Gabriel Glaser
University of Stuttgart, Stuttgart

Marcel Hafner
University of Stuttgart, Stuttgart

Abel Gitzing
University of Stuttgart, Stuttgart

Sebastian Frank
sebastian.frank@uni-hamburg.de
University of Hamburg, Hamburg

Alireza Hakamian
mir-alireza.hakamian@iste.uni-stuttgart.de

University of Stuttgart, Stuttgart

André van Hoorn
andre.van.hoorn@uni-hamburg.de
University of Hamburg, Hamburg

1 Context and Problem

Architecture-based quality evaluation of software sys-
tems is well-established [4]. When initial architectural
models do not exist, it is a common technique to ex-
tract the architecture of software systems from trace
data. A suitable view to represent microservice-based
software architectures is the component and connec-
tor (C&C) view, which can be used to describe how
provided services’ operations interact. Such represen-
tations are already used in (1) Resirio for the anal-
ysis and visualization in the context of resilience re-
quirements elicitation [7] and (2) MiSim for resilience
assessment through simulation of microservice-based
architectures [6]. The (semi-)automated extraction
of input models for these approaches would ben-
efit resilience engineers by reducing their effort in
(re)modeling and calibrating, especially considering
the dynamic nature of microservice-based software
systems.

However, existing approaches for extracting archi-
tectures that follow a microservice-based style, such
as MicroART [5], do not consider (1) identification
of resilience patterns and mechanisms from applica-
tion traces, (2) resource demand estimation of opera-
tion calls, and (3) the integration into the Resirio and
MiSim approaches.

2 Objective

This study aims to extract the C&C view of
microservice-based software systems at runtime and
provide capabilities for (1) resource demand estima-
tion of operation calls, (2) detection of resilience
mechanisms and patterns—namely, retry, circuit
breaker, and load balancers—and (3) support for var-
ious state-of-the-art application trace formats. The

high-level goal is to minimize manual modeling over-
head for simulation-based resilience assessment of
microservice-based architecture in MiSim.

3 Method

We follow the design science approach with a practi-
cal problem [2]. In the solution space, we designed a
technique for detecting resilience patterns, estimating
resource demand, and supporting multiple trace for-
mats. Moreover, we provide tooling that implements
our proposed technique. In particular, we use state-
of-the-art approaches for resource demand estimation
implemented in the library LibReDE [1]. We apply
heuristics to detect resilience patterns, e.g., curve fit-
ting to identify linear and exponential retry strate-
gies. Finally, we use the intermediate trace format
OPEN.xtrace [3] to reach compatibility with various
application trace formats.

In order to validate that our tooling does solve the
problem at hand, we evaluated our tooling by (i) de-
tecting round-robin load balancing of a HAProxy [8]
and an exponential retry implementation of Re-
silience4j [9] from application traces in a controlled
environment, and (ii) extracting the architecture of
an industrial software system.

4 Result

Our tooling is able to correctly identify both resilience
mechanisms, including their configuration based on
the application traces. Furthermore, we successfully
extracted the architecture of the industrial software
system. However, since our approach is partially built
on heuristics, the evaluation also revealed limitations
and the need for a limited amount of manual adjust-
ment by the resilience engineer.



5 Talk Outline and Additional Re-
sources

In our talk, we will present our approach, focusing
on the resilience mechanism detection. In addition,
we will present selected evaluation results, our lessons
learned during the development of the approach, and
give a short demonstration of the tool.

6 Acknowledgments

The authors thank the German Federal Ministry
of Education and Research (dqualizer project and
Software Campus 2.0—Microproject: DiSpel, FKZ:
01IS17051) for supporting this work.

References

[1] S. Spinner et al. “Librede: A library for resource
demand estimation”. In: Proceedings of the 5th
ACM/SPEC international conference on Perfor-
mance engineering. 2014, pp. 227–228.

[2] R. J. Wieringa. Design Science Methodology for
Information Systems and Software Engineering.
Springer, 2014.

[3] D. Okanović et al. “Towards performance tooling
interoperability: An open format for represent-
ing execution traces”. In: European Workshop
on Performance Engineering. Springer. 2016,
pp. 94–108.

[4] R. H. Reussner et al. Modeling and simulating
software architectures: The Palladio approach.
MIT Press, 2016.

[5] G. Granchelli et al. “Towards Recovering the
Software Architecture of Microservice-Based Sys-
tems”. In: 2017 IEEE International Confer-
ence on Software Architecture Workshops, ICSA
Workshops 2017, Gothenburg, Sweden, April 5-7,
2017. IEEE Computer Society, 2017, pp. 46–53.

[6] L. Wagner et al. “MiSim - A Lightweight and
Extensible Simulator for a Scenario-Based Re-
silience Evaluation of Microservice Architectures
(Poster)”. In: Short Paper Proceedings of Sympo-
sium on Software Performance 2021. Vol. 3043.
CEUR Workshop Proceedings. CEUR-WS.org,
2021.

[7] S. Frank et al. “Interactive Elicitation of Re-
silience Scenarios Based on Hazard Analysis
Techniques”. In: Lecture Notes in Computer Sci-
ence. Vol. 13365. (in press). Springer, 2022.

[8] HAProxy document. HAProxy. https://www.
haproxy.org/. Accessed: 2022-August. 2022.

[9] Resilience4j. Resilience4j document. https : / /

github.com/resilience4j/resilience4j. Ac-
cessed: 2022-August. 2022.

https://www.haproxy.org/
https://www.haproxy.org/
https://github.com/resilience4j/resilience4j
https://github.com/resilience4j/resilience4j

	Context and Problem
	Objective
	Method
	Result
	Talk Outline and Additional Resources
	Acknowledgments

