
This is the author’s version of the work. It is posted for your personal use. Not for
redistribution. The definitive version was published in Companion of the 17th European
Conference on Software Architecture (ECSA ’23 Companion), September 18–22, 2023,
Istanbul, Turkey, 2023.

TQPropRefiner: Interactive Comprehension and
Refinement of Specifications on Transient

Software Quality Properties

Sebastian Frank1,2[0000−0002−3068−1172], Julian Brott1[0000−0002−6253−3908],
Alireza Hakamian2[0000−0001−9899−0062], and

André van Hoorn1[0000−0003−2567−6077]

1 University of Hamburg, Hamburg, Germany
{sebastian.frank,andre.van.hoorn}@uni-hamburg.de

2 University of Stuttgart, Stuttgart, Germany

Abstract. Microservice-based systems are exposed to transient behav-
ior caused, for example, by (frequent) deployments, failures, or self-
adaption. The potential complexity of transient behavior scenarios makes
specifying flawless transient behavior requirements challenging. Still, the
required approaches and tooling to comprehend transient behavior and
refine the requirements are lacking.
This paper aims to address this gap by providing a structured interactive
approach that assists software architects in comprehending transient be-
havior and refining requirements. The prototypically implemented
TQPropRefiner allows specifying transient behavior requirements using
Property Specification Patterns (PSP). Then, TQPropRefiner uses run-
time verification to evaluate requirement satisfaction on time-series data,
e.g., from Chaos Experiments. TQPropRefiner visualizes the system’s be-
havior and requirement satisfaction to foster comprehension. Based on
the gathered insights, users can refine their requirements. In particular,
TQPropRefiner currently supports refining timing constraints. Finally,
we evaluated our early approach’s feasibility and practical applicability
in a qualitative user study with five industry experts. Despite currently
limited support of PSP and refinement strategies, the preliminary re-
sults indicate that the approach can facilitate understanding transient
behavior requirements among software architects and assist in the re-
finement process. Thus, our work is a first step toward facilitating the
comprehension of transient behavior and refinement of requirements.

1 Introduction

In the last decade, major software companies have tended to deploy large appli-
cations in the cloud as small (micro-)services and benefited from greater agility,
reduced complexity, and more effective application scaling in the cloud [24]. Due
to their flexibility, microservice-based software systems are suitable for operat-
ing under frequent changes, e.g., load peaks, autoscaling, (re-)deployments, or
failures. Changes in a software system usually temporarily affect the quality

2 S. Frank et al.

properties of a software system, e.g., response times increase due to a service
failure. The term transient behavior denotes the system’s behavior during the
phase in which the system is not in a steady state.

It is important to make quality requirements and expectations regarding tran-
sient behavior explicit and to (in-)validate them [11]. For example, a too-long
service recovery time may lead to customer frustration. Furthermore, disprov-
ing the expectation of the reaction time of an autoscaler can indicate severe
problems in the system design and configuration. However, flawlessly specifying
transient behavior is challenging. This is due to the complexity involved in the
changes triggering transient behavior and the dynamic nature of transient be-
havior. One challenge is that specifying exact parameter values involves a lot
of uncertainty among software architects, i.e., they often do not know whether
their overall specification is feasible. Thus, learning from validating and refining
the requirements is necessary. Approaches like Chaos Engineering [2] — building
hypotheses and experimenting on the system to (in-)validate them —tackle this
problem through an iterative refinement process. However, they are unspecific
in guiding comprehension and refinement with strategies and methods. Further-
more, as shown in previous work [3], there is a general lack of proper tooling to
address transient behavior.

This paper presents our approach to comprehension of transient behavior
and refinement of transient behavior requirements. As a formalism for specify-
ing requirements, we use Property Specification Patterns (PSP) [1] to transform
human-readable Structured English Grammar (SEG) specifications into testable
Metric Temporal Logic (MTL) [20] formulas. TQPropRefiner —the early proto-
typical implementation of our approach —guides software architects through the
three steps of (i) specifying transient behavior requirements using PSP, (ii) val-
idating the requirements against runtime data using runtime verification [22]
and presenting the requirement satisfaction using visualizations, and (iii) refin-
ing the requirements by altering time constraints. Regarding refinement, our
approach currently supports the use case in which a requirement is not satisfied
and requires a timing parameter value modification to be satisfied.

We conducted an expert user study with five industry participants to gather
early feedback on our approach and TQPropRefiner, despite limitations in the
supported PSP and refinement strategies. The participants had to solve two
tasks regarding comprehension and refinement capabilities of TQPropRefiner,
answer a questionnaire, and participate in an interview. The participants were
able to solve the tasks, and their answers indicate that our approach was easy to
use. However, further improvements are necessary for use in practice, e.g., align-
ment of the shown visualizations and closer integration with system monitoring.
Furthermore, the time constraint refinement needs more explanation.

In summary, the contributions of this paper comprise:

– An approach and tool (TQPropRefiner) that fosters comprehension of tran-
sient behavior to facilitate specification and refinement of transient behavior
requirements. We make TQPropRefiner publicly available [6].

Refinement of Specifications on Transient Software Quality Properties 3

– Our vision and initial concept of refining transient behavior requirements.
In particular, the implementation of a time constraint refinement strategy.

– The evaluation of our approach regarding feasibility and practicability in an
expert user study. We provide the used documents and (anonymized) results
as part of the supplementary material [12].

2 Background

2.1 Transient Behavior

Microservice-based software systems are usually complex and interdependent.
Changes, e.g., failures, deployments, or self-adaptation, in one or more services
may cause a system to transition from one steady state to another. This shift of
states is described by the term transient behavior [4]. The concept of transient
behavior originates from the field of electrical engineering. Within the state-space
system model, there are two kinds of behavior: steady-state and transient. By
performing transient analysis, it is possible to gain insight into the time-varying
behavior of a system’s Quality of Service (QoS) [25].

Since transient behavior is not focused on particular quality attributes and
change types, it subsumes more specific concepts dealing with dynamic system
behavior, e.g., survivability [15], elasticity [16], and resilience [21]. The quality
of a system can be specified by quality requirements containing metrics such as
response times. To identify occurrences of transient behavior, the actual QoS
function of an underlying metric can be compared against the expected QoS [4].
Beck et al. [4] use Service-Level Objective (SLO) violations as indicators for
transient behavior.

2.2 Property Specification Patterns

Transferring software system requirements to mathematical formulas to evalu-
ate its quality can be challenging due to pragmatic barriers. To overcome this
obstacle, Dwyer et al. [10] developed PSP to specify temporal logic formulas for
recurring requirement scenarios. A PSP represents a generalized depiction of a
frequently occurring requirement that governs the allowable sequences of events
and states in a finite-state model of a system. Dwyer et al. [10] introduce the
two pattern categories order patterns and occurrence patterns. Each pattern also
has a scope, which defines an interval during the program execution in which
the pattern must remain valid [10]. The scope is established by specifying the
pattern’s starting and ending state/event. Five different scopes exist: Global,
Before, After, Between, and After-Until.

The initial PSP version is qualitative, i.e., it does not consider time con-
straints. To address this limitation, Konrad & Cheng [19] introduced Real-Time
Specification Patterns. They describe these patterns as quantitative as they al-
low for quantitative reasoning about time. Such PSP can be mapped to MTL,
among others, as done in this work. Autili et al. [1] further extend and align the
available qualitative and quantitative patterns.

4 S. Frank et al.

An example of an instance of the qualitative Response pattern is: Globally,
if {response time high} then in response {instance increase} eventually holds
within 5 seconds. In this example, response time high and instance increase are
predicates, i.e., they evaluate to either true or false at specific points in time.
The 5 seconds is the time constraint on how fast the autoscaler must react.

3 Related Work

To our knowledge, only a limited number of approaches and tools holistically
focus on specifying and comprehending transient behavior and refining transient
behavior requirements.

The Property Specification Pattern Wizard (PSPWizard) [23,1] aims to sim-
plify the selection and creation of PSP by providing a graphical user interface
to construct supported patterns. A mapping generator allows the translation of
the specified pattern into various target logics. The specification is not the core
contribution of our approach, so we mostly reuse the concept of the PSPWizard.
We further extend it by adding capabilities to specify predicates and visualize
the satisfaction of predicates for the imported runtime data.

The Transient Behavior Verifier (TBV) [13] is a tool that provides an Appli-
cation Programming Interface (API) for verifying transient behavior occurrences
specified as PSP or MTL on monitoring data. The requirement satisfaction is
visualized using a multi-line graph for the relevant metrics and colors to in-
dicate requirement satisfaction over time. In our approach, we reuse TBV for
its verification capabilities. Further, we reuse the visualization concept to show
requirement satisfaction. However, we further extend the concept by also visu-
alizing the satisfaction of the predicates involved in the requirement.

Hoxha et al. [17] developed VISPEC, a graphical tool for eliciting MTL
requirements. VISPEC utilizes a graphical formalism automatically translated
to MTL to assist non-experts in creating and visualizing formal specifications.
Therefore, users can easily specify requirements without requiring training in
formal logic. In that regard, we share the comprehension and visualization of
temporal logic on runtime data. Nevertheless, VISPEC is focused on (initial)
specification, while we focus on refinement of requirements. Furthermore, VIS-
PEC uses an MTL-based graphical formalism in the specification process, while
we use PSP and internally translate to MTL. Finally, our approach has a stronger
focus on visualizing the satisfaction of requirements instead of supporting the
specification.

The TransVis [4] approach assists software architects and DevOps engineers
in specifying and evaluating transient behavior occurrences in their microservice
systems. The tool displays the architecture of the assessed system and visualizes
transient behavior in a graph. The user can interact with the tool via a chatbot,
allowing for specifying simple requirements. The TransVis approach is based on
the resilience triangle model from Bruneau et al. [7] in which transient behavior
is characterized by the three indicators: initial loss of quality, time to recovery,
and loss of resilience. Consequently, the specifications and visualizations are built

Refinement of Specifications on Transient Software Quality Properties 5

Requirement
specified?

Import
Transient Behavior

Data Set

Specify Requirement

Verify Requirement
against Runtime Data

Requirement
Satisfied?

Software
Architect
Accepts

Software
Architect
Accepts

Apply Strengthen
Refinement Strategy

yes

no

yes

yes

no

no

Apply Weaken
Refinement Strategy

no

yes Visualize
Requirement
Satisfaction

Fig. 1: Flowchart of the approach

specifically for these metrics, and there is no refinement assistance beyond visual
comprehension. In contrast, we do not rely on the resilience triangle model and
focus on requirement refinement.

4 Approach and TQPropRefiner

4.1 Approach

The approach presented in the following is designed to assist software architects
in comprehending and refining quality requirements in the context of transient
behavior occurrences. Our underlying assumption is that transient behavior oc-
currences have been successfully identified, and data for a specified instance of
transient behavior can be provided. Thus, our approach does not provide support
for identifying transient behavior occurrences beyond visual inspection.

Our general approach is depicted in Figure 1. First, data from a detected
transient behavior occurrence has to be imported. If not already available, an
initial transient behavior requirement has to be specified. We use PSP as a for-
malism for these requirements since they are understandable to humans but also
formal enough to be testable [9]. This property of TQPropRefiner is exploited
in the next step, where we use runtime verification [22] to determine the satis-
faction of (parts of) the requirement. Next, we visualize the runtime data and
requirement satisfaction. Thus, software architects can easily decide whether the
overall requirement is satisfied. Further, the software architect can consider the
additional information to decide whether changes to the requirement are nec-
essary, i.e., either because the specified requirement did not reflect the initial
intention or new insights changed the expectation. A satisfied requirement can
be strengthened to reflect new confidence in the system’s capabilities. Vice versa,
an unsatisfied requirement can be weakened to reflect the insight that the system
behavior was actually good enough.

We introduce the concept of refinement strategies to transform a requirement
into a refined one. Besides the actual transformation, a refinement strategy has
the properties (i) type, (ii) target, and (iii) assistance. The type describes whether
the strategy aims to strengthen or weaken (or both) a requirement. The target
specifies which part of the PSP the transformation affects, i.e., the overall pat-
tern, scope, predicate, or time bound. Finally, assistance describes whether the

6 S. Frank et al.

Fig. 2: TQPropRefiner showing (A) the step selection, (B) the pattern evaluation
graph, and (C) the requirement specification & refinement

strategy actively assists the software architect in making a decision or whether it
just shows the software architect the effects of already applied decisions. In this
work, we focus on active assistance. An example of a strategy is “compute sat-
isfying time constraint” (type: weaken, target: time bound, assistance: active),
which we implemented as a first (active) strategy. In future work, we aim to add
and investigate further strategies.

4.2 TQPropRefiner

Figure 2 shows the TQPropRefiner prototype in a state where (1) a data set (see
DS2 in Section 5) has been imported, (2) the Response PSP has been selected,
and (3) an initial requirement (see T2 in Section 5) has been entered. The tool
guides the software architect through the three-step process of importing mon-
itoring data, selecting a PSP, and specifying & refining the requirement. Each
step can be accessed via the stepper component (see Figure 2 (A)).

Data Import The first step is to import a Comma-separated values (CSV)
file containing time series data of monitored metrics, e.g., from a chaos experi-

Refinement of Specifications on Transient Software Quality Properties 7

ment. The imported data is displayed in a table where each row represents the
monitored data for each time unit, and the columns show the metrics.

Specification In step two, the software architect is asked to select a PSP as
starting point for the initial specification. The selection is based on the pattern
hierarchy introduced by Dwyer et al. [10] and the PSPWizard [23]. The software
architect defines a scope, chooses a category (see Section 2.2), and finally picks
a PSP. To provide additional context, the selected pattern is presented in the
SEG as described by Autili et al. [1] and represented in a target logic of choice.
However, only MTL is currently supported, and the pattern catalog is limited
to three pattern variants: The Response pattern with the Global scope, and
the Universality and Absence patterns with the After scope. We plan to add
additional target logics and extend the supported patterns in the future.

The final step involves specifying the initial requirement and its refinement,
as shown in Figure 2. To provide an intuitive specification process, the selected
pattern is displayed as a SEG (see Figure 2 (C)). Each predicate of the pattern
can be specified individually (see Figure 2 (C2) & (C4)). A predicate is specified
by providing (1) a meaningful name, (2) selecting a measurement source (metric),
which is populated from the imported data set, (3) selecting a logic operator,
and (4) specifying a numeric comparison value.

Comprehension For verifying the PSP against the provided data set,
TQPropRefiner uses the Transient Behavior Verifier [13]. We host an instance
and access it via its API. The overall evaluation of the pattern is displayed in the
graph at the top (see Figure 2 (B)). An all-green graph indicates the satisfaction
of the entered requirement, while a red segment marks the moment the require-
ment is violated. The pattern evaluation result is also visualized by a green or
red rectangle around the pattern (see Figure 2 (C)).

The predicates are individually verified against the provided data set, and
the results are visualized in graphs. The time is represented on the X-axes, and
the Y-axes represent the metrics. A selected metric is displayed in a black line
chart, and the comparison value is a blue horizontal line. The time-dependent
evaluation of the predicate is visualized by green segments for intervals the pred-
icate is satisfied and red segments for unsatisfied intervals. In Figure 2 (C4),
the specification of the instance_increase predicate is shown, which is defined
as instance_count being greater than 2. The time-dependent evaluation of the
predicate is visualized in the graph to the right. Corresponding to the specifica-
tion, the interval of 2 instances being up is marked red, while the interval where
the instance count increased to 3 is marked green.

Refinement To refine the pattern specification, the software architect can
tweak its predicates. TQPropRefiner provides the passive refinement strategy
of updating the visualization for the selected predicate and the overall pattern.
This aims to facilitate a better comprehension of how changing one or more
parameters affects the satisfaction of (parts of) the requirement.

8 S. Frank et al.

For specifying and refining the time constraints, TQPropRefiner provides the
implementation of an active refinement strategy (see Figure 2 (C5)). The tool
performs a binary search based on the available predicate specifications to test
potential time constraints. The resulting time-dependent verification result is
displayed to the user showing for which time constraint intervals the pattern is
satisfied following the same color coding we use for predicates. Currently, this
refinement strategy is only available for time constraints, but we plan to add
similar functionality for predicates in future versions of TQPropRefiner.

Implementation & Technologies TQPropRefiner has been implemented us-
ing the Angular framework in conjunction with the Angular Material UI compo-
nent library. The code for the prototype is publicly available [6]. The modeling
of PSP has been adopted from the PSPWizard [23]. We migrated the code to
TypeScript classes, as the PSPWizard is implemented in Java.

5 Evaluation

To evaluate our approach’s comprehension and refinement capabilities and prac-
tical applicability, we conducted a qualitative user study with five industry ex-
perts. We provided the experts with two tasks that needed to be solved using the
prototype and asked them to evaluate their experience afterward. We investigate
the following research questions:

– RQ1: To what extent can our approach facilitate comprehension of transient
behavior occurrences among practitioners?

– RQ2: To what extent can our approach assist practitioners in refining re-
quirements?

– RQ3: How can the approach be improved to assist practitioners in address-
ing practical challenges?

In the following, the provide details on our method, the provided tasks, the study
execution, the results, and the discussion of the results and our method.

5.1 Method

We decided on a qualitative evaluation for two reasons. Firstly, the research
questions focus on usability and improving an early concept and prototype. We
argue that this can be best achieved by promoting a dialog with the study
participants. This perception is supported by Greenberg & Buxton [14], who
suggest that quantitative study designs could be detrimental in evaluating new
ideas, particularly during prototype design, as they may limit expert feedback.
Secondly, the complexity and the specialization of the covered topic lead to the
practical barrier of finding enough participants to conduct a representative study.

We designed the expert user study not to exceed 1 hour and conducted
it with each participant individually. In total, we gathered five participants,

Refinement of Specifications on Transient Software Quality Properties 9

Task 1 (T1): Service Failure Task 2 (T2): Load Peak
Data Set 1 (DS1) Data Set 2 (DS2)

– According to the SLO, response times
may not exceed 150 time units

– In the exceptional case of only 1 service
being available, a response time of up
to 400 time units is tolerated

– In the experiment, 1 of in total 2 service
instances has been terminated

– Response times may not exceed 100
time units.

– In case the system is unable to satisfy
the performance requirement, the num-
ber of instances should be increased

– In the experiment, due to a load peak,
service instances are scaled from 2 to 3

After {instances are smaller than 2}, it is
never the case that {response times exceed
400 time units}.

Globally, if {response times exceed 100 time
units} then in response {the instance count
increases to 3}.

Is the requirement fulfilled? How long did the system take to scale to 3
service instances?

Table 1: Context and SLO, initial requirement, and question for the two tasks

three working in a software company from the taxes domain and two working
in a consulting and development company focusing on Application Performance
Monitoring (APM). The participation did not demand any prior preparation.

5.2 Tasks

To solve the tasks, the participants received access to a hosted version of TQPro-
pRefiner. We also provided two CSV files containing time-series data from two
chaos experiments conducted by Frank et al. [13] with Chaos Toolkit (CTK) [8].
The first data set (DS1) provided originates from Chaos Experiment 1, in which
an injected fault caused a service instance to crash, leading to a response times
increase. The second data set (DS2) is from Chaos Experiment 2, in which
the workload suddenly increases, and the implemented autoscaler is required
to spawn an additional service instance.

Each task demands participants to go through four steps using TQPropRe-
finer. Firstly, each participant was asked to select a specific data set from a chaos
experiment. Secondly, a suggested PSP from the pattern catalog needed to be
selected. Thirdly, a given (initial) specification had to be entered by specify-
ing the predicates of the selected PSP. Fourthly, a question on the requirement
needed to be answered. Answering the questions may require the refinement of
the initial specification. For each task, the participants have been provided with
context information containing (i) the SLO of the underlying system defined by
stakeholders, (ii) an initial specification, and (iii) a question as shown in Table 1.

We designed Task 1 (T1) to evaluate to which degree participants are able
to enter a given requirement specification and correctly interpret the verifica-
tion result without any necessary refinement. Thus, T1 is designed to address

10 S. Frank et al.

RQ1. Task 2 (T2) aims to evaluate to which degree participants can refine a
given specification to examine a related requirement question. The answer to
this question had to be derived from refining the time constraint of the selected
specification. Therefore, T2 addresses RQ1 and RQ2. To address RQ3, we con-
ducted an interview with the participant to discuss potential improvements and
required developments for practical use.

5.3 Execution

We conducted the evaluation online, with participants sharing their screens dur-
ing the entire study. At the beginning of the session, we explained the study
procedure. Afterward, we provided a link to a Google Form containing all infor-
mation necessary for the study participation. This included seven questions on
the participants’ background knowledge, the two tasks to solve using TQPro-
pRefiner, and 20 questions. The study host was present to answer potential
questions from participants but did not actively intervene while the participants
were going through the information on the Google Form.

After solving the given tasks, we asked each participant to evaluate their
experience concerning feasibility, usability, practical applicability, and potential
improvements. To evaluate the prototype’s feasibility, we asked the participants
to rate their interaction with the tool on a Likert scale (one to five, one: strongly
disagree; five: strongly agree). We based our useability questions on the System
Usability Scale (SUS) [5] method. Finally, we gathered practical applicability
evaluation and potential improvement suggestions using qualitative questions as
well as a discussion between the participant and the session host.

5.4 Results

RQ1 No participant encountered problems entering the given specification into
TQPropRefiner. Interpreting the evaluation result of a single predicate as well
as the overall property was perceived as easy by all participants, who rated the
comprehensibility for both with a median value of 4 out of 5. Additionally, all
five participants were able to solve the tasks correctly.

During the specification process, we observed that adding a time constraint
to the requirement was not intuitive for some participants and, therefore, may
require additional explanation within the tooling. Consequently, the answers to
the ten SUS questions indicate that the tool overall was generally perceived as
easy to use with a low entry barrier.

RQ2 All participants perceived the refinement of a single predicate as simple
and rated it as easy with a 5 out of 5 median value. Refining the overall property
was perceived as more difficult but was still rated with a median value of 4 out
of 5. As part of the qualitative evaluation, we asked the participants whether
they would have been able to solve the given task without TQPropRefiner. Two
participants answered yes (they would just use the data visualization and manual
inspection), two with no, and one with maybe. Also according to the results, T2

Refinement of Specifications on Transient Software Quality Properties 11

0

1

2

3

4

1 2 3 4 5

of

 p
ar

ti
ci

pa
nt

s

(disagree) (agree)

(a) ... easy to interpret the initial eval-
uation of a single predicate.

0

1

2

3

4

1 2 3 4 5

of

 p
ar

ti
ci

pa
nt

s

(disagree) (agree)

(b) ... easy to interpret the initial prop-
erty evaluation.

0

1

2

3

4

1 2 3 4 5

of

 p
ar

ti
ci

pa
nt

s

(disagree) (agree)

(c) ...easy to refine single predicate.

0

1

2

3

4

1 2 3 4 5

of

 p
ar

ti
ci

pa
nt

s

(disagree) (agree)

(d) ... easy to refine the property.

Fig. 3: Answers by the study participants for selected questions. It was...

has been solved correctly by four of the five participants. The wrong answer was
due to the challenges of correctly interpreting the time constraint in the context
of the overall pattern. However, the existence and the functionality of the tool’s
time constraint refinement feature were not intuitive to the participants. This
needs better presentation and explanation in future versions.

RQ3 In open feedback, participants stated various ideas and requirements for
potential production use of TQPropRefiner. Multiple participants pointed out
that comprehensibility could be increased by horizontally aligning the predicate
graphs. As depicted in Figure 2 (C2) & (C4), the two predicate graphs are not
aligned, which makes identifying dependencies between various metrics difficult.

One participant elaborated that importing time series data as CSV files would
be infeasible in production environments. Instead, an API integration of standard
monitoring systems for trace import is required. For the question of whether the
participants would frequently use the tool, the answers varied. Some participants
agreed, but others pointed out that this depends on the precondition that they
face tasks in their jobs where a tool like this would be beneficial.

Finally, participants provided some general potential improvements, e.g.,
adding a feature to save and load specifications, providing additional expla-
nations on the color coding, and improving the tool’s responsive design.

12 S. Frank et al.

5.5 Discussion

The findings of RQ1 and RQ2 indicate that our approach is able to assist prac-
titioners in comprehending and refining transient behavior requirements. The
participants were able to enter a given specification, interpret verification re-
sults, and refine requirements. The tool’s usability was perceived positively and
has a low entry barrier. This is supported by the fact that the participants
solved the given tasks by using the tool. Still, our approach must be improved,
extended, and evaluated in a more exhaustive user study.

5.6 Threats to Validity

As a result of the evaluation, we have identified three validity concerns. Firstly,
the group of participants was small and lacked heterogeneity. The five partic-
ipants were employed at only two companies; some had similar expertise. In-
cluding software engineers without an APM background might have negatively
impacted the results. Nevertheless, the number of (heterogenous) participants in
qualitative studies is less critical. Studies with low (1 to 5) numbers of partici-
pants are not uncommon, according to Isenberg et al. [18].

Secondly, the tasks were designed specifically for the data sets we used for
the evaluation. Since this data originates from academic experiments, they are
not representative of the scenarios practitioners face in their production envi-
ronments. Despite these concerns, we assume that the qualitative feedback we
have received will be a first step in extending our early-stage prototype toward
handling real-world challenges in the future.

Thirdly, some participants stated they could have solved the given tasks with-
out TQPropRefiner. Thus, we must thoroughly investigate whether the compre-
hension and refinement of the requirement were facilitated due to using the tool,
e.g., by comparing solutions obtained with and without TQPropRefiner.

6 Conclusion

This paper introduced our approach and tool TQPropRefiner for supporting
software architects in comprehending transient behavior and refining require-
ments. In an expert user study, the participants were able to solve two tasks and
confirmed the ease of use— providing evidence that our approach is a valuable
step toward the interactive refinement of transient behavior requirements.

In future work, we aim to significantly extend the supported PSP, add sup-
port for more sophisticated predicates, and add more refinement strategies. In
particular, we plan to extend the refinement to parameters involved in the pred-
icates. Further, we aim to evaluate the approach in more realistic use cases and
make the necessary improvements suggested by the participants, e.g., monitoring
integration and alignment of the visualizations.

Refinement of Specifications on Transient Software Quality Properties 13

Acknowledgment The authors thank the German Federal Ministry of Educa-
tion and Research (dqualizer FKZ: 01IS22007B and Software Campus 2.0 —
Microproject: DiSpel, FKZ: 01IS17051) for supporting this work. The work
was conducted in the context of the SPEC RG DevOps Performance Working
Group3.

References

1. Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualitative,
real-time, and probabilistic property specification patterns using a structured en-
glish grammar. IEEE Transactions on Software Engineering 41(7), 620–638 (2015)

2. Basiri, A., Behnam, N., Rooij, R., Hochstein, L., Kosewski, L., Reynolds, J., Rosen-
thal, C.: Chaos engineering. IEEE Software 33, 1–1 (01 2016)

3. Beck, S., Frank, S., Hakamian, A., van Hoorn, A.: How is transient behavior ad-
dressed in practice? insights from a series of expert interviews. In: Companion of
the 2022 ACM/SPEC International Conference on Performance Engineering. pp.
105–112 (2022)

4. Beck, S., Frank, S., Hakamian, A., Merino, L., van Hoorn, A.: Transvis: Using visu-
alizations and chatbots for supporting transient behavior in microservice systems.
In: 2021 Working Conference on Software Visualization (VISSOFT). pp. 65–75.
IEEE (2021)

5. Brooke, J.: SUS-a quick and dirty usability scale. Usability Evaluation in Industry
189(194), 4–7 (1996)

6. Brott, J.: Github project (2023), https://github.com/Cambio-Project/transient-
behavior-requirement-refiner

7. Bruneau, M., Chang, S.E., Eguchi, R.T., Lee, G.C., O’Rourke, T.D., Reinhorn,
A.M., Shinozuka, M., Tierney, K., Wallace, W.A., Von Winterfeldt, D.: A frame-
work to quantitatively assess and enhance the seismic resilience of communities.
Earthquake Spectra 19(4), 733–752 (2003)

8. Chaos Toolkit Team: Chaos Toolkit (2023), https://chaostoolkit.org
9. Czepa, C., Zdun, U.: On the understandability of temporal properties formalized

in linear temporal logic, property specification patterns and event processing lan-
guage. IEEE Transactions on Software Engineering 46(1), 100–112 (2018)

10. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: Proceedings of the second workshop on Formal methods
in software practice. pp. 7–15 (1998)

11. Eckhardt, J., Vogelsang, A., Fernández, D.M.: Are "non-functional" requirements
really non-functional? an investigation of non-functional requirements in practice.
In: Proceedings of the 38th International Conference on Software Engineering. pp.
832–842 (2016)

12. Frank, S., Brott, J., Hakamian, A., van Hoorn, A.: Supplementary material (2023),
https://doi.org/10.5281/zenodo.8125612

13. Frank, S., Hakamian, A., Zahariev, D., van Hoorn, A.: Verifying transient behavior
specifications in chaos engineering using metric temporal logic and property specifi-
cation patterns. In: Companion of the 2023 ACM/SPEC International Conference
on Performance Engineering. p. 319–326. ICPE ’23 Companion, Association for
Computing Machinery, New York, NY, USA (2023)

3 https://research.spec.org/devopswg

https://github.com/Cambio-Project/transient-behavior-requirement-refiner
https://github.com/Cambio-Project/transient-behavior-requirement-refiner
https://chaostoolkit.org
https://doi.org/10.5281/zenodo.8125612
https://research.spec.org/devopswg

14 S. Frank et al.

14. Greenberg, S., Buxton, B.: Usability evaluation considered harmful (some of the
time). In: Proceedings of the SIGCHI conference on Human factors in computing
systems. pp. 111–120 (2008)

15. Heegaard, P.E., Trivedi, K.S.: Network survivability modeling. Computer Networks
53(8), 1215–1234 (2009)

16. Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in cloud computing: What it
is, and what it is not. In: 10th international conference on autonomic computing
(ICAC 13). pp. 23–27 (2013)

17. Hoxha, B., Mavridis, N., Fainekos, G.: Vispec: A graphical tool for elicitation of mtl
requirements. In: 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). pp. 3486–3492. IEEE (2015)

18. Isenberg, T., Isenberg, P., Chen, J., Sedlmair, M., Möller, T.: A systematic review
on the practice of evaluating visualization. IEEE Transactions on Visualization
and Computer Graphics 19(12), 2818–2827 (2013)

19. Konrad, S., Cheng, B.H.: Real-time specification patterns. In: Proceedings of the
27th International Conference on Software Engineering. pp. 372–381 (2005)

20. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-time
systems 2(4), 255–299 (1990)

21. Laprie, J.C.: From dependability to resilience. In: 38th IEEE/IFIP Int. Conf. on
Dependable Systems and Networks. pp. G8–G9 (2008)

22. Leucker, M., Schallhart, C.: A brief account of runtime verification. The Journal
of Logic and Algebraic Programming 78(5), 293–303 (2009)

23. Lumpe, M., Meedeniya, I., Grunske, L.: Pspwizard: machine-assisted definition of
temporal logical properties with specification patterns. In: Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering. pp. 468–471 (2011)

24. Villamizar, M., Garcés, O., Castro, H., Verano, M., Salamanca, L., Casallas, R., Gil,
S.: Evaluating the monolithic and the microservice architecture pattern to deploy
web applications in the cloud. In: 2015 10th Computing Colombian Conference
(10CCC). pp. 583–590. IEEE (2015)

25. Wang, C.Y., Logothetis, D., Trivedi, K.S., Viniotis, I.: Transient behavior of atm
networks under overloads. In: Proceedings of IEEE INFOCOM’96. Conference on
Computer Communications. vol. 3, pp. 978–985. IEEE (1996)

	TQPropRefiner: Interactive Comprehension and Refinement of Specifications on Transient Software Quality Properties

