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ABSTRACT
Chaos Engineering is an approach for assessing the resilience of
software systems, i.e., their ability to withstand unexpected events,
adapt accordingly, and return to a steady state. The traditional
Chaos Engineering approach only verifies whether the system is
in a steady state and considers no statements about state changes
over time and timing. Thus, Chaos Engineering conceptually does
not consider transient behavior hypotheses, i.e., specifications re-
garding the system behavior during the transition between steady
states after a failure has been injected. We aim to extend the Chaos
Engineering approach and tooling to support the specification of
transient behavior hypotheses and their verification.

We interviewed three Chaos Engineering practitioners to elicit
requirements for extending the Chaos Engineering process. Our
concept uses Metric Temporal Logic and Property Specification
Patterns to specify transient behavior hypotheses. We then devel-
oped a prototype that can be used stand-alone or to complement
the established Chaos Engineering framework Chaos Toolkit. We
successfully conducted a correctness evaluation comprising 160
test cases from the Timescales benchmark and demonstrate the pro-
totype’s applicability in Chaos Experiment settings by executing
three chaos experiments.

CCS CONCEPTS
• Software and its engineering → Software fault tolerance;
Software testing and debugging; Formal software verification.
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1 INTRODUCTION
Modern software systems should be resilient, i.e., behave properly
despite disturbances and recover from service degradation [32]. A
widespread approach for resilience engineers to assess their soft-
ware systems’ resilience is Chaos Engineering (CE) [5], i.e., contin-
uous experimentation by continuously executing so-called chaos
experiments. A chaos experiment consists of two crucial elements:
a steady-state hypothesis and a fault injection. The steady-state
hypothesis is usually evaluated twice, i.e., at an experiment’s start
and end. CE tools like Chaos Toolkit (CTK) [24] also allow for test-
ing the steady-state hypothesis repeatedly during the experiment.
However, even then, they only consider the system state at the time
of the hypothesis evaluation. As shown in previous work [14], soft-
ware architects are also interested in analyzing transient behavior,
i.e., the behavior during the transition between steady states after a
failure has been injected. For example, in a quality scenario [6, 14],
the expected system response “autoscaling helps” could be refined
to “when the response time exceeds a certain limit, the autoscaler
should (repeatedly) act until the response time is below the thresh-
old”. CE conceptually does not allow the specification of such an
expected response measure as transient behavior hypotheses.

We aim to study how the CE process and tooling can be ex-
tended to allow verifying transient behavior hypotheses. To reach
our goal, we extend the CE process with a transient behavior hy-
pothesis using Metric Temporal Logic (MTL) [18] as the underlying
formalism, as it allows specifying transient behavior consisting of
states, order, and timing behavior. Consequently, we apply runtime
verification [19] of the MTL formulas based on monitoring data.

Our extended CE approach also aims to be helpful to CE prac-
titioners. Hence, we conducted interviews with three CE practi-
tioners. Considering their feedback, we designed the approach
and prototype shown in Figure 1 that supports CE practitioners
in (i) specifying, (ii) verifying, and (iii) investigating transient be-
havior. We also support Property Specification Patterns (PSP) [2]
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Figure 1: Extended Chaos Engineering Process

as an easier-to-use formalism than MTL. Regarding the result in-
vestigation, our concept incorporates visualizing monitoring data
alongside color highlighting for verification results. The proto-
type is loosely coupled to the state-of-the-art CE framework Chaos
Toolkit [24] and can also be used stand-alone.

We conduct a correctness evaluation with data from the Time-
scales benchmark [31] for MTL monitoring tools yielding 160 tests,
covering four PSP types, positive and negative outcomes, and Future-
MTL and Past-MTL formulas. We design and execute three chaos
experiments on a mock of an industrial system and verify transient
behavior hypotheses using our prototype. The prototype verified
all benchmark formulas and transient behaviors correctly.

To summarize, our contributions presented in this work are:
• The requirements and expectations from interviews with CE
practitioners regarding an extended CE approach.

• A concept and browser-based prototype extending CE for
specifying, verifying, and investigating transient behavior.

• Supplementary material [33, 34] including the three chaos
experiments. Note that we cannot provide the mock of the
industrial system for confidentiality reasons.

The remainder of this paper is structured as follows: Section 2 in-
troduces MTL, PSP, and CTK. Section 3 summarizes related works.
The conducted interviews are presented in Section 4. Section 5
presents our concept, developed based on the practitioners’ feed-
back. Subsequently, Section 6 describes the developed prototype,
and Section 7 outlines the conducted evaluation. Finally, Section 8
summarizes the work and mentions potential future work.

2 BACKGROUND
In the following, we introduce MTL and PSP, which our approach
uses as formalisms to describe transient behavior. Furthermore, we
introduce CTK, the CE tool extended by our prototype.

2.1 Metric Temporal Logic
Metric Temporal Logic (MTL) [18] extends Linear Temporal Logic
(LTL) [23] temporal operators by time intervals. Additionally, MTL
supports past and future operators. MTL is often split semantically
into Past-MTL and Future-MTL depending on the utilized temporal

operators. Given a finite set 𝑃 of atomic propositions, Past-MTL
can be defined by the following grammar [28]:

𝜑 = ⊤ | 𝑝 | ¬ 𝜑 | 𝜑1 ∨ 𝜑2 | 𝜑1 𝑆𝐼 𝜑2
where 𝑝 ∈ 𝑃 and 𝐼 ⊆ [0,∞). The subscript 𝐼 represents a time
interval, i.e., the temporal operator’s timing constraint. Further
operators can be derived, e.g., ∧ (and), ♦𝐼 (once), and ■𝐼 (always).
For example, the MTL formula “♦[0, 5]𝑄” means that 𝑄 once was
satisfied within the last 5 time units (TU). Future-MTL comprises
equivalent operators evaluated in the future direction instead of
the past, i.e., □𝐼 (always), ♢𝐼 (eventually), and𝑈𝐼 (until) [3].

MTL formulas can contain predicates, also called propositional
functions. They are expressions that contain variables and become
statements when the variables are substituted with constants [11].

2.2 Property Specification Patterns
Property Specification Patterns (PSP) [13] are recurring patterns
that can be mapped to (structured) natural language [2] or temporal
logics, e.g., LTL orMTL. For example, the response pattern “Globally,
event 𝑃 must always be followed by event 𝑄 within 5 s” can be
translated to Future-MTL as “□(𝑃 → ♢[0,5]𝑄)”. Each pattern also
has one of the five scopes "Globally", "Before𝑄", "After𝑄", "Between
𝑄 and 𝑅", "After 𝑄 until 𝑅".

Czepa and Zdun [12] found evidence that PSP are more compre-
hensible than LTL. Furthermore, Autili et al. [2] introduced the tool
PSP Wizard, allowing its users to easily create PSP specifications
in natural language and translate them to various temporal logics.

2.3 Chaos Toolkit
Chaos Toolkit (CTK) [24] is an open-source tool for executing au-
tomated chaos experiments [5]. It has a variety of extensions that
allow the injections of faults on the platform, network, and applica-
tion layer. CTK supports chaos experiments specified by the YAML1
data serialization language. CTK’s chaos experiments consist of a
steady-state hypothesis and a fault injection called the method. A
steady-state hypothesis usually contains probes that retrieve in-
formation from the system under test, while the method usually
contains actions that perform operations on the system under test.

3 RELATEDWORK
We investigated various CE tools, i.e., Chaos Mesh [25], Grem-
lin [16], ChaosBlade [10], CTK [24], Litmus [20], CloudStrike [27],
and Chaos Monkey [21]. The tools distinctly differ in the targeted
quality attributes, supported platforms, and considered system layer.
Nevertheless, none of these tools supports transient behavior hy-
potheses. In particular, they do not use MTL or PSP. Some tools,
e.g., CTK [24], allow repeatedly testing the steady-state hypothesis
during the experiment. While this enables simple transient behavior
analysis, it lacks the expressiveness of MTL regarding timings.

There are applications of temporal logic and runtime verification
in the more general field of resilience engineering. The tool Lo-
tus@Runtime [4] constructs a probabilistic system model from
monitoring data. However, it only allows specifying reachabil-
ity statements and not complex temporal behavior. Cámara and
De Lemos [8] propose an approach for verification of self-adaptive
1https://yaml.org/
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systems and resilience properties based on probabilistic model-
checking. Collected data from stimulating the system’s environ-
ment is transformed into Discrete-Time Markov Chains (DTMCs).
DTMCs are a probabilistic approach used to generalize the results
of multiple executions, while CE is about single runs. Thus, they
use model checking while we use runtime verification. The authors
also specify resilience properties using Probabilistic Computation
Tree Logic (PCTL) expressions based on the response pattern from
PSP. However, in general, PSP are not part of their approach, and
they use the response pattern to describe both the stimulus and the
expected response, which is still a steady-state hypothesis.

The work by Bursztein and Goubault-Larrecq [7] uses a variant
of Timed Alternating-Time Temporal Logic (TATL) to specify re-
silience properties but focuses specifically on network resilience.
Runtime verification is also applied by Torjusen et al. [26] for spec-
ifying self-adaptive security and privacy properties. However, their
approach is specific to the IoT and health domain. Similarly, the
work by Gouglidis et al. [15] specifies resilience properties using
Computation Tree Logic (CTL) but tests against resilience policies
for access control. An approach by Catano [9] aims to generate
code for safety and mission-critical systems to satisfy resilience
properties expressed in LTL. However, it does not consider timing
behavior as in MTL. Furthermore, full code generation is usually
infeasible for non-safety-critical systems as targeted by CE.

4 REQUIREMENTS ELICITATION
The interviews aimed to explore whether CE practitioners have
examined transient behaviors and have experienced difficulties
while specifying transient behaviors. Furthermore, the interviews
aimed to gather requirements regarding the extended CE approach
and feedback on our initial concepts and ideas for its realization.

4.1 Setting and Execution
We invited seven industry and academic employees with CE experi-
ence. Our invitation comprised a short interview description and a
consent form. Four people answered with interest in participating.
However, one was not able to schedule an interview. The remaining
three participants comprised (i) a senior software architect from
industry, (ii) a master’s student and research assistant who has done
CE research, and (iii) a master’s student involved in CE research
and applying CE in the industry.

The interviews consisted of 20 questions in three parts. In the first
part, we gave a short introduction and asked the interviewees about
their expertise and preceding attempts to analyze transient behavior.
In the second part, we asked about the interviewees’ opinions on
using concepts such as MTL, PSP, and runtime verification. Further,
we gathered feedback on their potential use of our approach and
specific suggestions. A video demonstration of an early version
of our prototype accompanied the questions. In the third part, we
elicited the interviewees’ requirements regarding the extended
CE approach using a question catalog. The catalog was split into
conceptual, technical, and quality requirements.

We defined the following hypotheses that reflect the initial design
decisions of our concept and development plans:

• 𝐻1: The interviewees have experienced situations where
they could not define behaviors they wanted to verify.

• 𝐻2: The interviewees have tried to analyze behaviors unre-
lated to the steady state.

• 𝐻3: The interviewees agree that the proposed CE extension
provides deeper insights into software systems’ resilience
and view it as meaningful.

• 𝐻4: The interviewees want to verify transient behavior hy-
potheses independent of CE, i.e., in a stand-alone analysis.

• 𝐻5: The concept of specifying transient behavior hypotheses
using MTL and PSP is sufficient and complete.

• 𝐻6: The concept of verifying transient behavior hypotheses
using runtime verification is sufficient and complete.

• 𝐻7: A visualization containing the verification results and
the monitoring data is a helpful output of the approach.

• 𝐻8: Usability, extensibility, and performance are important
quality attributes for the proposed approach and prototype.

The interviews were conducted as video calls and in a semi-
structured manner. Each interview took 60min to 90min. Addition-
ally, all interviews were recorded with the participants’ consent.

4.2 Results
All three interviewees stated they have experience with CE. How-
ever, two said that they would lack practical experience. All inter-
viewees have experienced situations where they wanted to verify
non-steady-state behaviors, and two were able to verify them. How-
ever, one had to do much manual work, and the third interviewee
could achieve this only partially. Thus, the participants confirm 𝐻1
and, to some extent, 𝐻2, supporting the relevance of our work.

All participants agreed that the proposed approach would pro-
vide deeper insights into the resilience of software systems, con-
firming 𝐻3. Regarding how to adopt the approach, one interviewee
could not answer, as he was not actively practicing CE back then.
Another interviewee responded that some interfaces or adapters
would be required to integrate the extended CE approach into his
workflow. The last interviewee answered that integration into his
workflow would be easy since he uses similar technologies.

Two interviewees would regularly use the proposed approach
if their chaos experiments had some defined criteria regarding
transient behaviors. The third interviewee would use the approach
when he wants to knowmore about the system than whether or not
a particular service is still running. Additionally, two interviewees
said they could imagine using the approach and the prototype for
scenarios and use cases outside the scope of CE, which confirms
𝐻4 and emphasizes the importance of a stand-alone feature.

All (somewhat) agreed that the concept of specifying transient
behaviors is complete and sufficient. However, two were concerned
about the difficulty in obtaining meaningful values for the speci-
fications. Additionally, two participants said that some assistance
in creating the transient behavior specifications would be helpful.
Confirming 𝐻5, all interviewees opted for both presented input
options, i.e., MTL and PSP. The participants appreciated MTL’s
expressiveness and PSP’s readability and practicability, especially
when working with specifications they did not create. They sug-
gested additions to the behavior specification, e.g., more logical
predicates, such as increasing and decreasing trends. Regarding
supported monitoring tools, the interviewees suggested CSV files,
time series databases in general, and Prometheus [1] in particular.
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Figure 2: Interaction between our extended CE ap-
proach (“Verifier”) and its environment

Regarding 𝐻6, the interviewees mostly agreed that the concept
for verifying hypotheses is complete and sufficient. However, they
stated that more information in the verification’s output would be
helpful, e.g., which parts of a hypothesis failed. For this reason, two
interviewees liked the idea of visualizing monitoring data and verifi-
cation results, which was not very important to the third participant.
This still rather supports 𝐻7. Two participants denoted the discrete
nature of the event traces a limitation. The third interviewee said
that in practice, it is a strength of the approach since he is unaware
of monitoring tools capturing measurements in non-discrete ways.

An interviewee called usability the prototype’s essential quality,
and other features could be neglected in its favor. Two interviewees
stated that a user interface would increase the prototype’s usability.
Furthermore, all interviewees ranked extensibility as important.
However, two ranked response times as of minor importance be-
cause event traces should be short as transient behaviors typically
hold over a short duration, i.e., minutes. This partially confirms 𝐻8.

5 CONCEPT
The proposed CE extension comprises (i) a format for specifying
transient behavior, (ii) a method for verifying the specified transient
behavior, and (iii) means to present the verification results to the
users. The approach and its three parts are detailed in the following.

5.1 Overview
We define the extended CE process as follows: (1) build a steady-
state hypothesis, (2) build a transient behavior hypothesis, (3) vary
real-world events, (4) run experiments in production, (5) automate
experiments, and (6) minimize blast radius. We added step 2 to the
original process by Basiri et al. [5] while keeping the other steps.

Based on the extended CE process and the elicited requirements
(see Section 4), we derived the potential interaction of a resilience
engineer using our approach, as displayed in Figure 2. First, the
resilience engineer has to specify a transient behavior hypothesis.

Our prototype can assist in formulating and integrating this hy-
pothesis into the chaos experiment description. Then, the initial
steady-state check and the anomaly injection are executed as in
the traditional CE approach. After the experiment and the second
steady-state check, the transient behavior check is initiated. The
CE tool sends the transient behavior hypothesis to the prototype.
Then, our prototype collects the required monitoring data regard-
ing the transient phase from the system’s monitoring. Next, the
verification is performed, and the CE tool receives the verification
result, i.e., whether the transient behavior hypothesis holds. Finally,
the resilience engineer can inspect the monitoring data and results
in visualizations provided by the prototype.

Our process relies on two assumptions: First, monitoring in
the system under test is in place, and monitoring data is recorded
with sufficient accuracy, e.g., in a time-series database. Second,
the verification is executed offline, i.e., at the experiment’s end.
This is because transient behavior hypotheses could get satisfied
later in the experiment, e.g., when the response Q of the response
pattern could still occur. However, sometimes hypotheses cannot
be satisfied any longer, e.g., when Q’s time limit is reached. Then,
the experiment could be aborted. Thus, we consider detecting such
irreversible states a valuable direction for future work.

5.2 Transient Behavior Specification
Traditionally, a steady-state hypothesis is a statement regarding
a single system measurement at a certain time, verified against a
certain tolerance [5]. Even if the steady-state hypothesis is carried
out repeatedly, it is still a statement regarding only a single point
in time. In contrast, a transient behavior hypothesis considers a
series of points in time or even the entire experiment. Therefore,
we decided to use MTL [18] as the underlying formalism for de-
scribing transient behavior since it can express states’ occurrence,
order, and timing behavior. For example, □(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡𝑖𝑚𝑒ℎ𝑖𝑔ℎ →
♢[0,30] (𝑠𝑐𝑎𝑙𝑒𝑑𝑢𝑝 ∨ ¬𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡𝑖𝑚𝑒ℎ𝑖𝑔ℎ)) describes that whenever
the response time is high, within 30TU, the autoscaler should
spawn a new instance, or the response time is not high any longer.

As explicitly stated by the interviewees, specifications in MTL
are hard to provide without any experience in temporal logic. Thus,
our extended CE approach supports PSP as an abstraction layer
for the complexity of MTL. For example, the previous example in
MTL could be expressed by the response pattern as “Globally, if
(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡𝑖𝑚𝑒ℎ𝑖𝑔ℎ) [has occurred] then in response (𝑠𝑐𝑎𝑙𝑒𝑑𝑢𝑝 𝑜𝑟

𝑛𝑜𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡𝑖𝑚𝑒ℎ𝑖𝑔ℎ) [eventually holds] within 30TU”.
In addition, since the logical variables contained in an MTL for-

mula or a PSP definition do not include information regarding how
they should be interpreted, a transient behavior hypothesis must
also contain information concerning the logical variables, events,
and predicates featured in the behavior description. Our approach
defines eleven basic predicate types described in Table 1. Note that
custom predicates can be handled by pre-evaluating the measure-
ments and using the boolean predicate type in the approach.

Listing 1 depicts how the specification concept could be imple-
mented in the JavaScript Object Notation (JSON) format. We de-
cided on a data language because CTK uses a data language as well,
which is suitable for representing configuration information. Line 2
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Table 1: Supported default predicates 𝑃 (𝑥𝑡 ) with 𝑥𝑡 being the
measurement for time 𝑡 and 𝑐 a constant

type operator
boolean 𝑥𝑡 = 𝑐

equal 𝑥𝑡 = 𝑐

notEqual 𝑥𝑡 ≠ 𝑐

bigger 𝑥𝑡 > 𝑐

biggerEqual 𝑥𝑡 ≥ 𝑐

smaller 𝑥𝑡 < 𝑐

smallerEqual 𝑥𝑡 ≤ 𝑐

trendUpward 𝑥𝑡 ≥ 𝑥𝑡−1
trendUpwardStrict 𝑥𝑡 > 𝑥𝑡−1
trendDownward 𝑥𝑡 ≤ 𝑥𝑡−1
trendDownwardStrict 𝑥𝑡 < 𝑥𝑡−1

shows the transient behavior description for the previously intro-
duced example. Information about the used formalism (lines 3 & 4)
is also provided to the approach. In this case, the description uses
keywords of Past-MTL, but they are interpreted as their equivalent
Future-MTL keywords (see Section 6.1).

After that, further building blocks of the hypothesis are defined,
i.e., predicates and data sources. In the example, the hypothesis
contains two predicates, i.e., scaledup evaluates to true when a data
point value equals one (lines 7-9), and responsetimehigh evaluates to
true when the provided data point value is higher than one. The data
sources are defined as CSV file columns (line 17). Each predicate is
associated with one data set, e.g., the rt data set is associated with
the response_time column.

5.3 Verification
Since CE requires verifying individual experiment runs, it is reason-
able to use runtime verification [19] as a more lightweight approach
to verify transient behavior hypotheses compared to heavyweight
model checking. That means, most notably, no formal model of
the system must be created, but monitoring needs to be in place.
However, the use of PSP allows transformations to various for-
mal languages suitable for model checking, which we consider an
extension of the approach in future work.

The concept assumes that a monitoring approach monitors rele-
vant events in a discrete-time manner. Moreover, we assume that
the relevant monitoring data can be retrieved from a time-series
database that persists all the relevant monitoring data. Therefore,
the verification approach requires a fitting query to obtain the de-
sired data. Furthermore, since monitoring tools provide data in
different formats and ways, our concept foresees the CSV format as
a generic format to represent monitoring data. This also contributes
to the approach’s requirement to be usable stand-alone, i.e., without
integration into specific CE or monitoring tools.

5.4 Assistance
Based on the interviews, two activities in working with transient
behavior hypotheses in CE require assistance: (1) providing a tran-
sient behavior specification and (2) investigating the results.

1 "specification": "always (( responsetimehigh(rt)) -> (
once [0,30] (scaledup(scaling1) or scaledup(
scaling2) or (not responsetimehigh(rt))))",

2 "specification_type": "mtl",
3 "future -mtl": "true",
4 "predicates_info": [
5 {
6 "predicate_name": "scaledup",
7 "predicate_logic": "equal",
8 "predicate_comparison_value": "1"
9 },
10 {
11 "predicate_name": "responsetimehigh",
12 "predicate_logic": "bigger",
13 "predicate_comparison_value": "1.0"
14 }
15 ],
16 "measurement_source": "csv",
17 "measurement_points": [
18 {
19 "measurement_name": "rt",
20 "measurement_column": "response_time"
21 },
22 {
23 "measurement_name": "scaling1",
24 "measurement_column": "scaling_ex1"
25 },
26 {
27 "measurement_name": "scaling2",
28 "measurement_column": "scaling_ex2"
29 }
30 ]
31 }

Listing 1: Example of a transient behavior hypothesis for the
expected response "autoscaling helps" in the JSON format.

Besides using PSP, our concept contains the (optional) use of a
wizard to ease the provision of transient behavior hypotheses. A
wizard helps the resilience engineer to see (1) which parts of the
specification are still missing and (2) which elements are supported.

The verification result is a concrete logical value in the tradi-
tional CE approach. As elicited, additional information should be
available, such as when the result changes from one value to an-
other, e.g., from true to false, and the values that caused this change.
Including these additional outputs provides the reasoning behind
the final verification result and makes the outputs of the extended
approach more informative. We propose to use a line chart for the
visualization that displays the event traces used during the ver-
ification presented as lines and verification results displayed as
background colors of the respective section in the plot.

6 PROTOTYPE
We have prototypically implemented our concept for specifying
and verifying transient behavior in CE as a web-based tool that can
easily be deployed in a Docker2 container. The prototype can either
run as a stand-alone application, i.e., to specify, verify, and investi-
gate transient behavior by manually providing the necessary data
or as a loosely coupled extension for CTK [24]. In the following, we
present the characteristics and limitations of the prototype regard-
ing the specification, verification, user interface, CTK integration,
monitoring integration, and architecture.

2https://www.docker.com

https://www.docker.com
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6.1 Specification & Verification Capabilities
The prototype can import transient behavior hypotheses in the
JSON format, e.g., such as in Listing 1. For verifying Past-MTL
formulas, the prototype uses a Python library [29]. Support for
Future-MTL is achieved by using the Past-MTL operators but re-
verting the monitoring trace, which is possible due to the traces’
limited size. However, the provided plots for result investigation
only provide limited functionality when using this feature. All pred-
icates introduced in Section 5.2 are supported. However, only PSP
for which the work by Ulus [31] provides a definition in past-MTL
are currently implemented, i.e., 15 variants of the absence, univer-
sality, response, and recurrence patterns. Note that PSP equivalents
mapped to Future-MTL can be imported.

6.2 Graphical User Interface
The prototype provides a Graphical User Interface (GUI) that can
be accessed using a web browser and consists of seven web pages.
Two pages are for navigating to the remaining five functional pages.
On the MTL and the PSP page, users can select the building blocks
for the hypothesis and the measurement source using drop-down
menus with pre-configured choices. On another page, users can
place an already defined hypothesis into a CTK experiment descrip-
tion. This page comprises a text box where the JSON-formatted
hypothesis must be pasted and a file input field for the experiment
description. Similarly, another page allows users to verify the tran-
sient behavior hypothesis stand-alone. It comprises a simple text
box for the hypothesis and a file input field for the CSV-formatted
monitoring data. Finally, a page displays the plot for investigation
of the verification results.

6.3 Chaos Toolkit Integration
We focused on extending CTK as it is an open-source, state-of-the-
art tool that allows injecting failures on the platform, network,
and application layers. Furthermore, it follows the CE process [5]
and uses the HTTP protocol for communication, which allows
extending it easily, as we have done it already in previous work [14].

Chaos experiments in CTK are YAML files compatible with the
JSON format of our transient behavior hypotheses. Therefore, using
the prototype’s GUI, the resilience engineer can easily add the
hypothesis to CTK’s experiment description. Technically, this is
realized as a probe in the experiment’s steady-state hypothesis.

When the steady state hypothesis is verified at the end of the
experiment, the probe sends an HTTP request containing the tran-
sient behavior hypothesis to the prototype. The prototype will then
obtain the monitoring data and verify the results. Its reply indicates
whether the hypothesis was fulfilled or not. CTK can then report
the result for all hypotheses.

6.4 Monitoring Integration
The prototype can obtain monitoring data from the time-series
databases InfluxDB [17] and Prometheus [1] provided that the lo-
cation of the database is known. While the monitoring needs to be
configured separately, queries can be defined for the prototype to
access the required data. For example, the query SELECT \"counts\"
FROM \"AliveInstances\".\"autogen\".\"InstanceCounts\" can be used
to get the number of a service’s instances when using InfluxDB.

«Service» 
Transient Behavior Verification Tool

«Component» 
GUI

«Component» 
REST API

«Component» 
Evaluator

«Component» 
Data Retriever

«Component» 
Plotter

«Component» 
Parser

Figure 3: Architecture of the prototype

The prototype supports CSV files for uploaded experiment data
or interoperability with other tools. It assumes that each row repre-
sents the system state at a certain time. Time units are interpreted
implicitly, meaning the resilience engineer must consistently use
the same time units in the specification and monitoring.

6.5 Architecture
The prototype is implemented in Python and can be deployed in
a Docker container. An overview of the architecture comprising
six components is presented in Figure 3. The code is hosted in
GitHub [34] including several screenshots of the user interface. The
following describe the architecture in more detail.

To enable communication via the HTTP protocol, a REST API is
implemented using the web framework Flask3. The API provides
several endpoints. However, the most important one is the “/moni-
tor“ endpoint. This endpoint listens for HTTP requests containing
transient behavior hypotheses as JSON objects, and when such a
request is received, the verification of the received hypotheses is
initiated. The REST API is also used to serve the web pages com-
prising the GUI, which is created using HTML, CSS, JavaScript, the
Bootstrap framework4, and Flask’s template engine Jinja5.

The parser transforms PSP to MTL formulas and can interpret
predicates. The data retrievers take care of collecting the required
monitoring data. There are data retrievers for InfluxDB, Prometheus,
and CSV files. The obtained data is then provided to the evaluator
component, which is responsible for verifying the prepared MTL
formula against monitoring data using a Python library [30]. Fi-
nally, the plotter creates plots showing the monitoring data, the
verification results, and the interval information using matplotlib6.

7 EVALUATION
We conducted two types of evaluations, one regarding the correct-
ness of the transient behavior hypotheses verification and another
regarding the approach’s applicability in CE settings.

7.1 Verification Correctness
In the first evaluation, we investigate whether the prototype can
correctly verify Future- and Past-MTL formulas, i.e., the prototype
returns the correct verification result for pairs of MTL formulas
and monitoring traces. Additional data and experiment results can
be found in the supplementary material [33].

3https://flask.palletsprojects.com
4https://getbootstrap.com
5https://jinja.palletsprojects.com
6https://matplotlib.org
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7.1.1 Experiment Description. We use a benchmarking tool for
MTL monitoring tools called Timescales [31] to generate MTL for-
mulas, monitoring traces, and the expected verification result. Even
though Timescales primarily focuses on the performance evaluation
of MTL monitoring tools, it can be used to evaluate the correct-
ness of the verification. Timescales can provide MTL formulas for
four PSP: absence, universality, recurrence, and response pattern.
Since different scopes are supported, this results in 10 different
MTL formulas available in Future- and Past-MTL variants. For each
formula, one short (10 000TU) and three large (1 000 000TU) traces
are available as CSV files. Furthermore, each of these traces can be
generated to satisfy and not satisfy its corresponding MTL formula.

We generated all available test data combinations to evaluate
our approach, resulting in 160 tests. The evaluation is executed
using Postman7, sending test data requests to the prototype. All
generated tests exist in the supplementary material.

7.1.2 Results. All the 160 tests delivered the verification result as
expected by the Timescales framework. Thus, we conclude that the
prototype correctly verifies typical Past- and Future-MTL formulas.

7.2 Applicability in Chaos Engineering Settings
In this part of the evaluation, we investigate whether the prototype
can verify transient behavior hypotheses in CE settings, i.e., when
using CTK. Table 2 summarizes the three conducted experiments.

7.2.1 Experiment Description. To execute chaos experiments, we
use a mock of a company’s payment calculation system [14], also
used by the company to evaluate its system. The actual business
logic is not crucial for evaluating our approach’s applicability. In
previous research [14], we elicited resilience scenarios for the same
system. The mocked system uses the microservice architecture
style [22] and consists of four services. The first service, called
API-Gateway, distributes the incoming load to two other services,
Service1 and Service2. Additionally, Service1 can forward calls to Ser-
vice2. A Eureka service is used for service discovery. Furthermore,
the test system includes a load generator capable of generating
a specific number of requests for the system’s endpoints. The in-
formation regarding the generated load is additionally saved into
an InfluxDB database instance. To enable the execution of chaos
experiments on the test system, we deployed the services on a local
microk8s8 installation. The deployment was configured so that two
instances of Service1 and Service2 were hosted on different pods.

We created and executed three chaos experiments using CTK and
our prototype. The injected faults are a service instance crash in the
first experiment and a sudden workload increase in the remaining
two experiments. These fault types are based on the resilience
scenarios we elicited in previous work [14]. The fault is injected
by stopping a Service1 pod while the system is in a normal mode
of operation. Regarding the steady-state hypothesis, we expect the
deployment to be fully available, i.e., all instances are running.

To evaluate the prototype’s different features, the experiments
cover MTL and PSP as input types and InfluxDB and Prometheus
as monitoring data sources. We define the following three different
transient behavior hypotheses: In the first experiment, we expect

7https://www.postman.com
8https://microk8s.io
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Figure 4: Result visualization for Chaos Experiment 2

the system to spawn a new instance within 30 s without exceeding
a response time of 100ms when the number of instances of Service1
drops below two. In the second experiment, we use the response
pattern to express that the number of instances of Service1 should
be increased (above two) within 30 s to 60 s whenever the response
time exceeds 150ms. Our expectation in the third experiment is
that the CPU utilization of both Service1 pods is always below 80 %.

7.2.2 Results. All experiments were conducted successfully, mean-
ing no error was detected, and the prototype provided the correct
results. We inspected the result in the visualization provided by the
prototype to confirm the correctness of the verification.

In the first experiment, the transient behavior hypothesis is
immediately violated since the response times increase to 250ms
after the instance failure. Figure 4 visualizes the result of the second
experiment in which the first response time violation occurs at
around 118 s. As a switch from the green to the red background
color indicates, a new instance is not spawned in less than 60 s.
Also, for the third experiment, the CPU utilizations of both pods
violate the threshold of 80 %. In all three experiments, the prototype
correctly detected the violation of the hypothesis.

7.3 Threats to Validity
The interviews with only three participants have a validity threat
of low significance. However, we did not aim for exhaustive require-
ments elicitation or evaluation but for early feedback on crucial
design decisions. Proper evaluation with more users is still required.

Regarding the evaluation of the verification correctness, there is
the threat of not testing incorrectly implemented features. In partic-
ular, we did not test PSP inputs but only equivalent MTL formulas.
However, an influence on the results is unlikely since the proto-
type internally translates PSP to MTL using established mapping
rules [2]. We did not test patterns unavailable in the Timescales
benchmark. However, the available patterns use all MTL operators.
Thus, it is unlikely that errors arise in other patterns.

Regarding the evaluation of verification in chaos experiments,
the main threat is that we did not execute chaos experiments rep-
resentative of real-world chaos experiments. However, the mock

https://www.postman.com
https://microk8s.io
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Table 2: Chaos experiments executed using CTK

Chaos Experiment 1 Chaos Experiment 2 Chaos Experiment 3
Fault Instance of Service1 crashes Sudden workload increase Sudden workload increase
Steady-State
Hypothesis Deployment fully available Deployment fully available Deployment fully available

Transient-State
Hypothesis

After instance crash, spawn instance
in <30 s; keep response time <100ms

When response time exceeds 150ms,
spawn new instance within 30 s to 60 s

CPU usage of Service1 pods is
always <80 %

Specification Type Past-MTL formula PSP Past-MTL formula
Monitoring InfluxDB InfluxDB Prometheus

system and the injected faults are taken from an industrial context.
The transient behavior hypotheses are synthetic because a business
stakeholder has not explicitly stated them. However, the stated
hypotheses refer to common strategies in microservice-based sys-
tems [22], i.e., instance restarting (Chaos Experiment 1), autoscaling
(Chaos Experiment 2), and load balancing (Chaos Experiment 3).
Nevertheless, a user study is still necessary to investigate whether
the prototype works according to the interest of actual users and
to verify the satisfaction of the elicited requirements.

8 CONCLUSION
This work introduced our tool and concept for specifying transient
behavior hypotheses using MTL and PSP in CE. It complements
the steady-state hypothesis and allows considering more complex
transient behavior. We interviewed CE practitioners to elicit their
requirements regarding an extended CE approach and considered
their feedback in the design, e.g., we added a GUI for specifying tran-
sient behavior and investigating the verification results. The proto-
type can be used with CTK or stand-alone. Our evaluation shows
that the prototype verifies the hypotheses correctly for Timescales
benchmark data and in CE settings using CTK.

In future work, we aim to extend the prototype with more com-
plex (multi-parameter) predicates and add support for all PSP. We
consider implementing additional features, e.g., support for time
units, to increase usability. We also aim to utilize the prototype’s
stand-alone capabilities to verify simulated chaos experiments and
for verification in an interactive scenario optimization process.
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