
This is the author’s version of the work. It is posted for your personal use. Not for
redistribution. The definitive version was published in European Conference on Soft-
ware Architecture 2024 Tools & Demo Track, September 03–06, 2024, Luxembourg,
Luxembourg, 2024.

DiSpel Cockpit: Specification, Verification, and
Refinement of Resilience Scenarios

Sebastian Frank[0000−0002−3068−1172], Aref
El-Maarawi Tefur[0009−0005−7621−0746], Alireza Hakamian[0000−0001−9899−0062],

and André van Hoorn[0000−0003−2567−6077]

University of Hamburg, Hamburg, Germany
{sebastian.frank,aref.el-maarawi.tefur}@uni-hamburg.de

Abstract. Chaos Engineering is an established method to assess the
resilience of software systems by injecting failures and learning from
experiments in production. Existing Chaos Engineering tools, such as
Chaos Toolkit, facilitate creating and executing various failures but lack
support for the entire process of resilience scenario elicitation, specifica-
tion, execution, and refinement. This paper introduces DiSpel Cockpit
for continuous and iterative specification, verification, and refinement of
resilience scenarios. To achieve its goal, the DiSpel Cockpit combines the
capabilities of existing tools into a holistic approach.
The DiSpel Cockpit uses Property Specification Patterns as a formalism
to specify stimuli and responses of scenarios. System data is obtained
from simulations and monitoring data. This paper presents the tool and
demonstrates its usefulness based on resilience scenarios for an industrial
system. We expect DiSpel Cockpit to assist software architects, particu-
larly in the early phases of applying Chaos Engineering, when scenarios
still have to be formalized, and feedback is necessary to gain confidence
before moving toward conducting experiments in production.

We provide a video1, source code, example data, and Docker containers2.

1 Introduction

Resilience can be defined as a system’s ability to continue its operation under
adverse condition and to recover [12]. It is a quality that should be taken into
account particularly when designing microservice-based software systems [13].
In the industry, Chaos Engineering (CE) [2] is an established method to build
confidence in a system’s resilience by injecting failures in production. It comprises
an experimentation process in which hypotheses are stated and refined.

In previous work [7], we successfully designed and conducted a workshop
to elicit resilience requirements in the form of quality scenarios as introduced
by Bass et al. [3]. As the CE methodology suggests, we turned some of these
1 Demo Video: https://youtu.be/gP6USBfOuxY
2 Source Code & Releases: https://github.com/Cambio-Project/DiSpel-Cockpit

https://youtu.be/gP6USBfOuxY
https://github.com/Cambio-Project/DiSpel-Cockpit


2 S. Frank et al.

scenarios into chaos experiments. Although we were eventually successful, we
also experienced challenges in the process. While plenty of tooling is available
for conducting chaos experiments, e.g., Chaos Toolkit [4], we found the limited
tool support for other activities in the CE process challenging. However, we also
found conceptual challenges in the early phase of applying CE. CE as a method
does not give explicit advice on how to (i) transform elicited resilience scenar-
ios into experiments, (ii) get quick feedback on the feasibility of the scenario
specifications, and (iii) refine resilience scenarios.

The DiSpel Cockpit implements the DiSpel approach [8], which aims to solve
these issues. It provides a web-based graphical user interface and coordinates
the extended and containerized tools PSPWizard [1], MiSim [10], MoSIM, TB-
Verifier [9], and TQPropRefiner [6]. Using our tool and PSPWizard [1], soft-
ware architects can specify resilience scenarios using Property Specification Pat-
terns (PSP) [1] to obtain testable scenarios. Next, relevant scenario occurrences
can be obtained through simulation with MiSim [10] and search in monitoring
data with MoSIM as a quick way to get feedback without setting up experiments.
Our tool then performs runtime verification [11] with TBVerifier [9] to determine
whether response specifications are satisfied. Finally, the scenarios can be refined
by adjusting the parameter values in the provided PSP using TQPropRefiner [6].

In contrast to established CE tooling, like Chaos Toolkit [4], our approach
is scenario-based, considers simulation and monitoring as data sources, and pro-
vides refinement strategies. Our previous work TQPropRefiner [6] is similar in
some aspects but allows only specification of a single (response) PSP and ex-
cludes the detection of relevant occurrence data. Thus, the contribution of this
work is a holistic, scenario-based CE tool focusing on the early phases of CE.

2 DiSpel Approach

In previous work, we introduced the vision of data-driven DiSpel approach [8],
which proposes a continuous and iterative process for the specification, verifi-
cation, and refinement of resilience scenarios as depicted in Figure 1. As such,
the DiSpel approach is a derivative of CE [2]. In contrast to CE, the DiSpel ap-
proach considers a wider variety of data sources, i.e., besides chaos experiments,
simulation, and monitoring data. Further, it introduces scenarios as a means to
describe hypotheses, provides concrete refinement strategies, and allows analyses
of transient behavior during experiments.

In the specification phase, software architects state hypotheses as scenar-
ios [3], which consist of the elements stimulus, response, and environment, among
others. PSP are used in the specification process for stimuli and responses.
PSP [1] can be described as templates for common specifications. They can be
represented in human-readable, Structured English Grammar (SEG) and trans-
lated into various testable, temporal logics.

In the verification phase, runtime verification [11] can be used to test against
system data from various data sources since the scenarios are formally specified.
The DiSpel approach considers active and passive data collection. Experiments



DiSpel Cockpit 3

Software 
Architects

Data Sources

Chaos 
Experiments

Simulations

Monitoring

Microservice-based 
Softwaresystem

(1) Specification

Property 
Specification 

Patterns

Graphical User 
Interface

(2) Verification

Scenarios

(3) Refinement

Stimuli
(i) Example Service

Instance Failure 
(ii) Exponential Load Peak 

Responses 
Response Time ≤ 1s

Response Satisfaction 
Unsatisfied: RT ≤ 1s

Parameter Refinement 
You could change the

threshold for Response
Time to 6s

Environment 
Static + Dynamic System

Descriptions, Data
Source Parameters

Approach 
Elements

Running Example 
Elements

Fig. 1: Simplified depiction of the DiSpel Approach (adopted from [8])

and simulations can be actively triggered through the specifications to gather
the data on the system’s response. Simulations usually require modeling effort
and lack precision but enable quick feedback and the potential to analyze what-if
scenarios. As a passive and resource-efficient method, the specified incidents can
be identified in monitoring data, if available. Note that all these methods will
be applied based on the same (stimuli) specification.

In the refinement phase, practitioners can gain insights from the verifica-
tion results on choosing feasible and appropriate resilience hypotheses for their
system. By suggesting adjustments to parameter values of the response, such as
a response time threshold, or modifying the entire pattern type of the response,
practitioners can strengthen or weaken the response for a given scenario. This
step is crucial due to the uncertainty in specifying exact values beforehand, as
software architects often struggle to determine if their specifications are feasible.

3 Running Example

In a workshop, we elicited 12 resilience scenarios for a real payment accounting
system under development, designed with a microservice-based architecture [7].
The sixth scenario describes an instance failure caused by a software bug and
the third scenario an exponentially increasing load peak. As a running example,
we synthesized a new scenario by combining these scenarios into a more complex
scenario. This scenario reads as immediately after an instance failure caused by
a software bug, the number of wage clerks using the system rises exponentially
during the payslip period at regular service hours. The system is expected to per-
form within a guaranteed tolerance, ensuring wage clerks always receive correct
answers within 1 second (99% of the time). We use this example to demonstrate
the tool’s workflow and main features.

In our scenario, we identify two stimuli (instance failure and load peak) and
one response (response time should be below 1 second, 99% of the time). Using
PSP, we formalize the response by applying the Universality pattern as follows:
Globally, it is always the case that ResponseTimeOK holds. Here, Response-
TimeOK is the system state more precisely described as response time ≤ 1 s.
Similarly, stimuli can be described through Existence and Response patterns.
The full example is provided together with the tool. Once stimuli and responses



4 S. Frank et al.

are specified using suitable PSPs, they can be mapped to temporal logics, e.g.,
Metric Temporal Logic (MTL) as described in the following:

□(ResponseTimeOK(AllResponseTimes))

We introduce the predicate ResponseTimeOK() with the AllResponseTimes met-
ric as a parameter. The temporal operator □ means always. Thus, this expression
evaluates to true when AllResponseTimes is less than 1 s for all its values.

4 DiSpel Cockpit

The DiSpel Cockpit serves as a unified platform that offers software architects
a web-based user interface, which seamlessly integrates and coordinates existing
tools, allowing our entire process to be managed and executed within the tool
itself. We continue with the running example (Section 3 and Figure 1) to demon-
strate how a user can apply the DiSpel approach (Section 2) using the DiSpel
Cockpit. Excerpts from the user interface are displayed in Figure 2. We refer to
the video and the example inputs on the project’s GitHub page for details.

4.1 Specification

The user starts by creating a new resilience scenario on the Scenario Editor
page. Creating a new scenario involves specifying the three main components
of the scenario [3] format: the stimuli, the response, and the environment. The
user can also provide a textual description of the scenario and a category tag for
filtering and grouping related scenarios.

To set up the environment, the user uploads the necessary files, configur-
ing the simulation and monitoring data retrieval processes implemented through
MiSim [10] and MoSIM, respectively. The simulation requires an architectural
model of the system under test, describing its architecture’s static properties,
like services, dependencies, and operations. Additionally, the user provides the
experiment description and load profiles, which describe the dynamic properties
of the system. For data retrieval from monitoring logs, users must supply mon-
itoring data (currently a CSV file) and set a parameter for the MoSIM tool to
determine the duration of the occurrences extracted from the monitoring data.

The stimuli and responses are specified using PSP. The PSP Editor page
facilitates the creation of specifications through a UI. Users construct the spec-
ification by selecting the scope and appropriate pattern type, followed by the
pattern itself and any additional building blocks compatible with the chosen
pattern. Figure 2 (A) shows a part of the UI after specifying the running ex-
ample’s response. In the background, the PSPWizard [1] translates the specified
pattern into the selected target logic, and the results are displayed and persisted.

4.2 Verification

Figure 2 (C) shows the compact presentation of a fully specified scenario in the
Scenario Overview, a list of all specified scenarios. The user can initiate the ver-
ification process by running simulations and searches over monitoring data. The



DiSpel Cockpit 5

C

D

A B

Fig. 2: Selected screenshots of the DiSpel Cockpit UI

specification of stimuli and responses is fundamentally similar, particularly re-
garding the pattern selection. However, responses contain only events derivable
from system metrics. In contrast, stimuli can (and should) also contain com-
mands because stimuli serve as the instructions for retrieving relevant system
data. The DiSpel Cockpit assists the software architect in formulating listen-
able events and commands by providing wizards. Figure 2 (B) shows the wizard
for specifying the kill command killExampleServiceInstance. This command can
then be used in a stimulus specification using the Existence pattern: Globally,
(killExampleServiceInstance) [holds] eventually between 20 and 20 time units.

Note that once a command is executed, the simulator can trigger a listenable
event. After the killExample-Service-Instance command is executed, it emits
the listenable event injection-of-failure (see Figure 2 (B)). In further stimuli



6 S. Frank et al.

specifications, this event acts as a trigger to induce a workload peak. Currently,
only kill and load commands are available. For monitoring data search, using
the same stimuli specifications, commands must be substituted by equivalent
events. MoSIM provides default implementations in an early state to achieve
this. For example, instead of terminating a service instance, the system searches
the monitoring data for a drop in the service’s instance count as a heuristic.

Responses are later in the process used to test against the retrieved system
data, which is performed by TBVerifier [9]. As shown in Figure 2 (D), the Dispel
Cockpit displays the verification results using color cues. The red color cod-
ing indicates that neither the whole scenario nor the individual responses were
satisfied for both simulation runs. Further, metrics are provided that show the
scenario’s overall resilience score and the share of satisfied scenario occurrences
from simulation and monitoring (see bottom of Figure 2 (C)).

4.3 Refinement

If the response specification is not satisfied for a particular stimulus occurrence,
the Dispel Cockpit aids the user in investigating the cause and refining the spec-
ification. The Refinement View, powered by TQPropRefiner [6], visualizes the
system’s behavior and the requirement satisfaction. Interactive refinement strate-
gies assist software architects in making informed decisions and understanding
the impacts of their choices. For instance, if the response time in our example
scenario exceeds the specified 1 s threshold, the tool tests and suggests alter-
native threshold values. A possible refinement would be to weaken the response
time threshold by setting it to a higher value. Once potential refinements are
identified and accepted, a new cycle of verification and re-refinement can begin.

5 Implementation

The DiSpel Cockpit is a web-based application following a client-server model.
The frontend is a single-page application built with the lightweight Nuxt.js, a
Vue.js-based framework. In contrast to Vue, Nuxt enables backend development
support, allowing communication between the frontend and backend services.
MongoDB is responsible for persisting the scenarios and analysis metrics. System
data is currently stored in a shared Docker volume.

The Cockpit’s backend is structured as microservices architecture, developed
using different programming languages (Java, Kotlin, Python) and frameworks
(Angular), integrating the five tools PSPWizard [1], MiSim [10], MoSIM, TB-
Verifier [9], and TQPropRefiner [6] as services. These services run in Docker
containers orchestrated using Docker Compose, enabling independent deploy-
ment and enhancing flexibility and scalability.

Most backend services previously lacked APIs and provided GUIs only. For
PSPWizard and MiSim, we implemented REST APIs by encapsulating the API
functionality within a Java submodule using the Spring Boot framework to re-
tain these tools’ standalone capability. TQPropRefiner required adaptions of



DiSpel Cockpit 7

functionality, GUI components, and its API for integration into our Vue fron-
tend. We established the TQPropRefiner as a separate service, embedding its
GUI elements within the Vue.js frontend as a web page. This facilitated seam-
less integration without extensive code modification. Some (functional) service
changes were necessary to allow for proper interaction between the tools. Among
others, we added a modern UI and a new target language to the PSPWizard to
match the syntax expected by TBVerifier and extended TQPropRefiner to gen-
erate its GUI dynamically for support of various PSP types.

6 Discussion

During the development of the DiSpel Cockpit and its underlying tools, we have
been in exchange with an industry partner to ensure the tool’s usefulness for
practical use cases. In early feedback, practitioners praised the expressiveness of
the PSP-based resilience scenarios and the capabilities for analyzing transient
behavior. In addition, the running example used during development is based
on real scenarios [7], and the simulation model has been reused from previous
work [10]. Further, PSP have shown to be sufficient to capture quality require-
ments in industrial case studies [1]. With limited generalizability, this indicates
the feasibility of our approach. Nevertheless, a more thorough and systematic
evaluation of the tool’s capabilities to aid software architects in the early phases
of CE is still necessary.

While there is no evaluation of the DiSpel approach and tool as such, specific
aspects and underlying tools have been partially evaluated before [6,10,9]. For
example, expert users solving tasks with TQPropRefiner were mostly successful
and found it easy to refine specifications [6]. Further, Czepa and Zdun [5] have
shown the understandability of PSP be superior to plain temporal logic.

The DiSpel Cockpit currently suffers from technical and conceptual limita-
tions, both partially originating from the underlying tools. While conceptually
compatible with PSP, the tooling’s implementation currently does not support
composed and complex predicates (like Service 1 fails and Service 2 fails) and
the handling of time units. It also requires equally sized time steps in the ana-
lyzed data. Further, the supported command (currently: kill and load), listener
(currently: user defined events), and PSP types must be extended. Regarding the
conceptual limitations, early user feedback suggests collecting monitoring data
from monitoring systems, executing actual chaos experiments, and adding sup-
port in eliciting and (graphically) specifying scenarios would increase the tool’s
utility. By addressing these limitations, we plan to extend the work to support
more (realistic) scenarios and industrial, real-world systems.

7 Conclusion

In this paper, we presented the DiSpel Cockpit, a tool that allows software ar-
chitects to specify, verify, and refine resilience scenarios. To reach this goal, the
DiSpel Cockpit leverages the capabilities of existing tools, i.e., the PSPWizard



8 S. Frank et al.

for specifying PSP, the resilience simulator MiSim and the stimuli search li-
brary MoSIM for generating/finding data, the TBVerifier for analyzing scenario
satisfaction, and the TQPropRefiner for refining scenarios.

Although we provided an essential proof-of-concept of the DiSpel approach
through the DiSpel Cockpit, a thorough evaluation of its usefulness and pre-
sumed benefits in a more realistic setting is still necessary, e.g., in user studies.
In future work, we also intend to improve and extend the connected tools and
the DiSpel Cockpit itself, e.g., by adding transformations to chaos experiments,
employing graphical specification, and assisting in eliciting scenarios.

Acknowledgments. The authors thank Angelina Heinrichs, Marvin Taube, Alexan-
der Baur, Patrick Mohr and Julian Brott for contributions to the tool and the German
Federal Ministry of Education and Research (dqualizer FKZ: 01IS22007B and Software
Campus 2.0 —Microproject: DiSpel, FKZ: 01IS17051) for supporting this work.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References
1. Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualitative,

real-time, and probabilistic property specification patterns using a structured en-
glish grammar. IEEE Transactions on Software Engineering 41(7), 620–638 (2015)

2. Basiri, A., Behnam, N., Rooij, R., Hochstein, L., Kosewski, L., Reynolds, J., Rosen-
thal, C.: Chaos engineering. IEEE Software 33, 1–1 (01 2016)

3. Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Addison-
Wesley Professional, 4 edn. (2021)

4. Chaos Toolkit Team: Chaos Toolkit (2023), https://chaostoolkit.org
5. Czepa, C., Zdun, U.: On the understandability of temporal properties formalized

in linear temporal logic, property specification patterns and event processing lan-
guage. IEEE Transactions on Software Engineering 46(1), 100–112 (2018)

6. Frank, S., Brott, J., Hakamian, A., van Hoorn, A.: TQPropRefiner: Interactive
comprehension and refinement of specifications on transient software quality prop-
erties. In: ECSA’23 Post-Proceedings (2023), (in press)

7. Frank, S., Hakamian, A., Wagner, L., Kesim, D., Zorn, C., von Kistowski, J., van
Hoorn, A.: Interactive elicitation of resilience scenarios based on hazard analysis
techniques. In: ECSA’21 Post-Proceedings. pp. 229–253. Springer (2021)

8. Frank, S., Hakamian, A., Wagner, L., von Kistowski, J., van Hoorn, A.: Towards
continuous and data-driven specification and verification of resilience scenarios. In:
ISSREW’22. pp. 136–137. IEEE (2022)

9. Frank, S., Hakamian, A., Zahariev, D., van Hoorn, A.: Verifying transient behav-
ior specifications in chaos engineering using metric temporal logic and property
specification patterns. In: ICPE’23 Companion. p. 319–326. ACM (2023)

10. Frank, S., Wagner, L., Hakamian, A., Straesser, M., van Hoorn, A.: MiSim: A
simulator for resilience assessment of microservice-based architectures. In: QRS’22.
pp. 1014–1025. IEEE (2022)

11. Leucker, M., Schallhart, C.: A brief account of runtime verification. The Journal
of Logic and Algebraic Programming 78(5), 293–303 (2009)

12. National Institute of Standards and Technology: NIST SP 800-39 (2011)
13. Newman, S.: Building Microservices. O’Reilly Media (2015)

https://chaostoolkit.org

	DiSpel Cockpit: Specification, Verification, and Refinement of Resilience Scenarios

