
This is the author’s version of the work. It is posted for your personal use. Not
for redistribution. The definitive version was published in Software Architec-
ture - 15th European Conference, ECSA 2021 Tracks and Workshops; Revised
Selected Papers, pp. 229–252, 2022, doi: 10.1007/978-3-031-15116-311.

Interactive Elicitation of Resilience Scenarios
Based on Hazard Analysis Techniques

Sebastian Frank1,2, Alireza Hakamian2, Lion Wagner2, Dominik Kesim2,
Christoph Zorn2, Jóakim von Kistowski3, and André van Hoorn1

1 Department of Informatics, University of Hamburg, Germany
{firstname.lastname}@uni-hamburg.de

2 Institute of Software Engineering, University of Stuttgart, Germany
3 DATEV eG, Nürnberg, Germany

Abstract. Context. Microservice-based architectures are expected to be
resilient. Problem. In practice, the elicitation of resilience requirements
and the quantitative evaluation of whether the system meets these re-
quirements is not systematic or not even conducted. Objective. We ex-
plore (1) the usage of the scenario-based Architecture Trade-Off Anal-
ysis Method (ATAM) and established hazard analysis techniques, i.e.,
Fault Trees and Control Hazard and Operability Study (CHAZOP),
for interactive resilience requirement elicitation and (2) resilience test-
ing through chaos experiments for architecture assessment and improve-
ment. Method. In an industrial setting, we design a structured ATAM-
based workshop, including the system’s stakeholders, to elicit resilience
requirements. To complement the workshop, we develop RESIRIO—a
semi-automated, chatbot-assisted, and CHAZOP-based approach— for
elicitation. We evaluate RESIRIO through a user study. The require-
ments from both sources are specified using the ATAM scenario template.
We use and extend Chaos Toolkit to transform and automate two sce-
narios. We quantitatively evaluate these scenarios and suggest resilience
improvements based on resilience patterns. Result. We identify 12 re-
silience scenarios in the workshop. We share lessons learned from the
study. In particular, our work provides evidence that an ATAM-based
workshop is intuitive to stakeholders in an industrial setting and that
stakeholders can quickly learn to use RESIRIO in order to successfully
obtain new scenarios. Conclusion. Our approach helps requirements and
quality engineers in interactive resilience requirements elicitation.

Keywords: Interactive Elicitation · Requirements Engineering · Re-
silience · Hazard Analysis

1 Introduction

Context and Problem. An intrinsic quality property of the microservices archi-
tectural style is resilience, i.e., the system meets performance and other Quality
of Service (QoS) requirements despite different failure modes or workload varia-
tions [21]. However, real-world postmortems [13] often show that systems suffer

https://doi.org/10.1007/978-3-031-15116-3_11
https://doi.org/10.1007/978-3-031-15116-3_11

230 Frank et al.

either unacceptable QoS degradation or recovery time. It is necessary to assure
system resilience in the context of microservice-based architectures. The first
step is to elicit resilience requirements, which is the focus of this paper.

Practitioners who use Chaos Engineering [2,18], including tools such as Chaos
Toolkit (CTK) [8] for resilience testing, require to (1) think about hazards [17]
as causes of QoS degradation, (2) set up chaos experiments by specifying failure
mode types and hypotheses of expected quality behavior, and (3) execute each
experiment to detect deviations from the hypotheses. This approach lacks the
systematic identification of causes of a hazard through hazard analysis methods.

Objective. We contributed to this problem in our previous work [15], which serves
as a foundation for this paper, but lacks a systematic process for elicitation and
specification. In the context of an industrial system, we now integrate hazard
analysis techniques [17], i.e., Fault Tree and Control Hazard and Operability
Study [10] into more systematic, interactive requirement elicitation processes
and use scenarios as a more formal description of requirements. Scenarios en-
able resilience testing through resilience experiments (aka chaos experiments) for
architecture assessment and improvement. Therefore, our research question is:
How to leverage hazard analysis techniques to interactively elicit resilience sce-
narios, which can be utilized to evaluate resilience through resilience experiments
and suggest architectural improvements quantitatively?

Research Overview. To answer our research question, we devise a method con-
sisting of three main activities (as illustrated in Figure 1). Our main contri-
butions lie in interactive resilience requirements elicitation, where we propose
an ATAM-based workshop and chatbot-assisted tooling for elicitation purposes.
The outcome of the elicitation activity is a set of structured scenarios that are
the basis for requirements assessment and architecture design improvement.

Main Contribution 1: Workshop-based Elicitation. The Architecture Trade-Off
Analysis Method scenario template [3] is a mechanism for eliciting quality re-
quirements and consists of the following elements: (1) source, (2) stimuli, (3) ar-
tifact(s), (4) system’s environment, (5) its response, and (6) response measure.

Workshop

RESIRIO

1.
Interactive
Elicitation

3.

Resilience

Improvement

Software

System

Scenarios

Resilience
Experiments

Resilience
Patterns

Introduction and
Architecture
Description

FTA-based

Hazard Analysis

Resilience
Scenarios Retrospective

Trace-based
Architecture
Extraction

CHAZOPs-based

Hazard Analysis Scenario Creation

Source
Artifact Response

MeasureEnviron-

ment

Faultload Workload Hypothesis
2.

Resilience

Assessment

Traces

SW Architect

Legend
Activities Artifact Non-AutomatedAutomated

Stimulus ResponseScenario

Structure

Experiment

Structure

OR

Fig. 1: Overview of this work and its contributions

Elicitation of Resilience Scenarios Based on Hazard Analysis Techniques 231

ATAM has already been used in practice to elicit and specify quality require-
ments other than resilience, e.g., availability, performance, and maintainability.
Thus, we hypothesize that ATAM can be adopted for effectively eliciting re-
silience requirements and evaluating them through chaos experiments. There-
fore, we use the ATAM scenario template to describe resilience requirements in
semi-structured textual language. The aim of the ATAM method is to assess ar-
chitectural design decisions to find trade-offs between quality requirements and
identify risks early. Therefore, (1) eliciting precise statements over quality re-
quirements, (2) eliciting precise statements over architectural design decisions,
and (3) evaluating whether the architectural design decisions satisfy the quality
requirements are major goals in ATAM. In this paper, we do not perform a trade-
off analysis, but use an ATAM-based workshop to elicit and specify resilience
requirements by involving system stakeholders. Our structured workshop also
comprises a hazard analysis based on the Fault Tree Analysis (FTA) [17].

Main Contribution 2: Chatbot-based Elicitation. Traditional elicitation tech-
niques, such as interviews or our workshop, impose a high amount of time on
participants, require locations to meet, and the presence of expert analysts.
Therefore, as also outlined by various researchers, e.g., Rietz [26], there is a
strong need for novel elicitation approaches. We designed an interactive elici-
tation technique called RESIRIO that utilizes a combination of a chatbot and
an architecture visualization. First, RESIRIO extracts the system’s architecture
and applies a CHAZOP-like method to identify hazards from Jaeger and Zipkin
traces. Then, the chatbot assists the engineer in the scenario specification. To
evaluate RESIRIO’s usability and effectiveness, we conduct an expert user study.

Results. The workshop’s result is a set of 12 resilience scenarios. We use CTK
to transform two scenarios into experiments, and conduct a measurement-based
resilience evaluation. The evaluation results suggest that the architecture does
not take temporary failures when services communicate with each other into
account. Resilience patterns [1] describe architectural changes to enable appli-
cations to handle failures gracefully and recover from them. We improve system
resilience by applying the retry pattern [22,21]. We validate the improvement by
re-executing the respective scenario. Furthermore, our user study gives evidence
that RESIRIO helps novice requirements engineers in fast requirements elicita-
tion, but has limitations in specifying various and precise scenarios. Regarding
the chatbot, engineers preferred the fast input of Quick Replies over writing text.

Summary of Further Contributions. In addition to the interactive elicitation
techniques, the paper makes the following contributions:

– Automating scenario execution using CTK for measurement-based evaluation.
– We share lessons learned that benefit both practitioners and researchers re-

garding resilience requirement elicitation, evaluation, and improvement.
– Artifacts— including scenarios, resilience experiments, and results of the ex-

perimentation—are available online [27].

232 Frank et al.

This paper is a revised and extended version of our workshop paper [11]. Our
new contribution is the RESIRIO approach and its evaluation. Due to space lim-
its, we consolidated parts of the workshop-based elicitation and the experiments.

2 Industrial Setting: Domain Context and System

The system’s purpose is to calculate payments. An accounting department’s wage
clerks use the payment accounting system to calculate each registered employee’s
income taxes. The payment accounting system has to gather data from health
insurance providers and send its results to the corresponding tax office to execute
the calculations. This process presumes that a company that wants to use the
payment accounting system provides its employee and tax information to the
health insurance provider and tax offices.

All of the payment accounting system’s tasks are currently taken care of by
a monolithic legacy system. In peak times, up to 13 million calculation requests
have to be handled in a day or single night. Under normal circumstances, this
number is significantly lower. In order to handle such varying loads more effi-
ciently, stakeholders desire a better scaling system. Therefore, the old system is
being replaced by a more scalable microservice-based Spring application. The
investigated part of the system under study, which is still under development,
consists of seven services as detailed later. The system is deployed to a Platform
as a Service (PaaS), i.e., Cloud Foundry (CF). Together with the industrial part-
ner, we decided on a scenario-based approach, as our industrial partner already
employed ATAM for other quality attributes.

3 Workshop-Based Elicitation and Specification

This section elaborates on the planning, execution, and results of the workshop.

3.1 Structured Workshop Approach

Before the workshop, we received documentation regarding the architecture of
the system. This allowed us to specify an architecture model of the system,
including a component diagram and an explanation of the implemented com-
ponents. Using ATAM, we required to know key architectural design decisions.
Therefore, knowing the architecture description in advance allowed us to focus
more on the hazard analysis and developing resilience scenarios.

The full-day workshop consisted of four sessions leveraging different methods.
The moderators explained each technique and method at the beginning of each
session. The participants were stakeholders of the system and comprised two
software architects, one product owner, and one quality assurance engineer.

Session 1: Introduction and Architecture Description for achieving a common
understanding of the workshop process and the system’s architecture. (1) We re-
solved misunderstandings regarding the elicited architecture description through
asking questions, and (2) refined the prepared architectural models.

Elicitation of Resilience Scenarios Based on Hazard Analysis Techniques 233

Session 2: Hazard Analysis to identify potential causes for degradation in
QoS. Index cards were used as a means to collect hazards. Afterward, the par-
ticipants arranged the hazards and their causes in a fault-tree-like fashion. To
not break the participants’ creative flow, we relaxed the strict construction rules
of fault trees, e.g., we allowed events having multiple parents, which resulted in a
graph. For this reason, we refer to this session’s result as a fault graph. Note that
the (directed acyclic) fault graph can be transformed into an equivalent fault
tree by creating duplicate sub-trees for nodes having more than one parent.

Session 3: Resilience Scenarios for collecting and prioritizing resilience sce-
narios based on the previously identified hazards. We provided a table based on
the ATAM scenario template. Then, the stakeholders jointly created scenarios
by informally analyzing the fault graph in a sequence driven by the associated
severity (in descending order) of the hazards.

Session 4: Retrospective to collect feedback about the workshop from the
participants and to inform them about the next steps, which comprise (1) re-
finement resilience requirements, and (2) execution of resilience experiments.

3.2 Workshop Results

Elicited Architecture Description: Figure 2 shows the component diagram of the
system as specified in the first session of the workshop. It describes a snapshot of
the system as used in the workshop and the subsequent activities. It represents
a typical microservice-based architecture. As such, the system is deployed to a
CF and contains several services. Each service has its own PostgreSQL database.
The only exception is the Calculations service, which employs a Mongo database.
The API-Gateway service handles all incoming connections and routes all com-
munications. A Eureka service is employed to provide service discovery for all
internal components. The Frontend service is the only external component that
a user can access directly. The Calculations service is the central hub of the
system since the calculation of payments is the system’s main feature. Once this
service receives a calculation request from the gateway, it collects all necessary
data asynchronously from the other services. The Companies service is used to
handle data the Frontend displays, but is not relevant for the calculation.

Hazard Analysis: Figure 3 shows the fault graph created in the second work-
shop session. The stakeholders agreed on unavailability or long response of set-
tlement calculations as the main system hazard. Therefore, user’s settlement

«Service»
Frontend

«Service»
Payments

«Service»
Working-

Hours

«Service»
Taxes

«Service»
Social-

Insureances
«Service»

Companies

«Service»
Employees

«Service»
Eureka

The API Gateway
can communicate
with each Service
directly

«Service»
Calculations

Eureka
Discovery

Zone

«Service»
A

PI-G
atew

ay

Fig. 2: Component Diagram of the Payment Accounting System

234 Frank et al.

User's
Settlement
cannot be
Calculated

(Large) Clients
cannot be

Processed in
Time

Data cannot
be Captured

Calculation
cannot

 be Executed

Incorrect
Calculation

Instance
has too slow
Response

Time

Service
does not
answer

Service answers
with techical

error
Gateway
Service
crashes

Middleware
crashes

external
 Service
does not
Answer

Bad
(auto)

Scaling Load
Peak

Eureka
crashes

Instance
stalled

Database
is full

Instance
dies while

doing work

Instance
gets

mirgrated

other Types
 of CF-related

Errors

Data Loss
Data is not

correctly
replicated
between

Datacenters

Data cannot
 be recoverd
after outage

Outage

Calculation
with

Inconsitent
Data

Caclulation
with Wrong

Version

Technically
Incorrect

Retry

other
Middleware

crashes

OR Gate

Basic Event

AND Gate

Intermediate
Event

Undeveloped
Event

Fig. 3: Cleaned Fault Graph

can not be calculated is the top event in the fault graph. The stakeholders ana-
lyzed possible causes from the top event until we reached basic events that we
could not further decompose. We connected different causes by logical operators,
i.e., AND and OR. For example, users can not calculate their settlement if it
is not processed in time. This can occur when the assigned instance stalls OR
responds to slow. We argue that the latter can be experienced if the system re-
ceives a sudden (work)load peak AND its (auto) scaling does not work correctly.
The hazards at the leaf nodes are potential candidates for fault/failure injection
during resilience experiments and can be initiated by tools such as CTK. The
stakeholders selected and prioritized the set of resilience experiments.

Resilience Scenarios: We gave the participants an empty table according to
the ATAM scenario template with the columns (1) source, (2) stimulus, (3) ar-
tifacts, (4) environment, (5) response, and (6) response measure. Further, we
explained the meaning of each column to the participants, who then added in-
dex cards to the table. We began by identifying possible sources. The stimuli
and artifacts were then derived from the previously created fault graph. The
environment represents different time periods when the identified stimuli occur.
The responses are the stakeholders’ assumptions about how the system should
respond to the particular stimulus. The response measures are based on their in-
ternal Service Level Objectives (SLOs). For example, a workload peak resulting
in a system failure was transposed into multiple scenarios. Users of the system
are the source since they cause the load peak. The respective stimulus is the
workload peak itself. A service was chosen as the artifact to represent that a
load peak can influence all service instances. As the environment, the payslip
calculation period was chosen to imply an existing base workload. At last, the
stakeholders chose the responses and response measures based on their SLOs.

Elicitation of Resilience Scenarios Based on Hazard Analysis Techniques 235

ID
S
h
or
t
N
am

e
S
ou

rc
e

S
ti
m
u
lu
s

A
rt
if
ac
t

E
n
v
ir
on

m
en
t

R
es
p
on

se
R
es
p
on

se
M
ea
su
re

01
P
ea
k(
L
in
C
o)
/

Se
r/
A
br

U
se
r

L
in
ea
r
in
cr
ea
si
ng

lo
ad

p
ea
k
(c
ol
d
st
ar
t)

Se
rv
ic
e

P
ay
sl
ip

ca
lc
ul
at
io
n

p
er
io
d

A
ll
re
qu

es
ts

ar
e
ha

nd
le
d

co
rr
ec
tl
y
an

d
in

ti
m
e

W
ag

e
ca
lc
ul
at
io
n

≤
1
s,

in
9
9
%

of
th
e
ca
se
s,

pa
ys
li
p

ca
lc
ul
at
io
n

≤
2
0
s
(3
00

E
m
pl
oy
ee
s)

02
P
ea
k(
E
xC

o)
/

Se
r/
A
br

E
xp

on
en
ti
al
ly

in
cr
ea
si
ng

lo
ad

p
ea
k

(c
ol
d
st
ar
t)

03
P
ea
k(
L
in
C
o)
/

Se
r/
N
oA

br
L
in
ea
r
in
cr
ea
si
ng

lo
ad

p
ea
k
(c
ol
d
st
ar
t)

N
ot

du
ri
ng

pa
ys
li
p

ca
lc
ul
at
io
n
p
er
io
d

04
P
ea
k(
E
xC

o)
/

Se
r/
N
oA

br
E
xp

on
en
ti
al
ly

in
cr
ea
si
ng

lo
ad

p
ea
k

(c
ol
d
st
ar
t)

05
F
ai
lu
re
(C

F
)/

In
s/
B
er

C
lo
ud

F
ou

nd
ry

In
st
an

ce
te
rm

in
at
es

In
st
an

ce
D
ur
in
g
w
ag

e
ca
lc
ul
at
io
n

U
se
r
un

aw
ar
e,

ca
lc
.
co
rr
ec
t
&

in
ti
m
e,

≥
1
in
st
an

ce
ru
nn

in
g

06
B
ug

/I
ns
/B

er
B
ug

D
ev
el
op

er
ge
ts

no
ti
fi
ed

D
ev
el
op

er
ge
ts

no
ti
fi
ed

w
it
hi
n

5
m
in

07
F
ai
lu
re
(M

W
)/

B
ac
/B

er
M
id
dl
ew

ar
e

O
p
er
at
or

M
id
dl
ew

ar
e
te
rm

in
at
es

B
ac
ke
nd

D
ur
in
g
w
ag

e
ca
lc
ul
at
io
n

A
b
or
t
ca
lc
ul
at
io
n,

ca
ll
er

w
il
l
b
e
no

ti
fi
ed

N
ot
ifi
ca
ti
on

ar
ri
ve
s
w
it
hi
n

1
s
in

9
9
%

of
th
e
ca
se
s

08
F
ai
lu
re
(M

W
)/

B
ac
/A

br
M
id
dl
ew

ar
e
te
rm

in
at
es

bu
t
re
co
ve
rs

A
sy
nc

.
pa

ys
li
p

ca
lc
ul
at
io
n

P
ro
ce
ss

is
ab

or
te
d
bu

t
ca
n

b
e
pi
ck
ed

up
R
es
ta
rt
s
an

d
SL

O
s
ar
e

sa
ti
sfi
ed

09
D
ep

l(
G
W

)/
F
ro
B
ac
/N

oI
dl
e

D
ep

lo
ym

en
t

G
at
ew

ay
te
rm

in
at
es

F
ro
nt
-

an
d

B
ac
ke
nd

N
ot

Id
le

F
ro
nt
en

d
sh
ow

s
er
ro
r,

ga
te
w
ay

re
st
ar
ts

D
ow

nt
im

e
of

ga
te
w
ay

in
st
an

ce
is

b
el
ow

1
m
in

10
F
ai
lu
re
(G

W
)/

F
ro
B
ac
/N

oI
dl
e

T
ec
hn

ic
al

Is
su
e

11
F
ai
lu
re
(S
er
E
)/

Se
r/
B
er

R
ec
ei
vi
ng

Se
rv
ic
e

Se
rv
ic
e
te
rm

in
at
es

Se
nd

in
g

Se
rv
ic
e
S,

R
ec
ei
vi
ng

Se
rv
ic
e
R

D
ur
in
g
w
ag

e
ca
lc
ul
at
io
n,

no
in
st
an

ce
av
ai
la
bl
e

E
rr
or

m
es
sa
ge

an
d
se
rv
ic
es

R
re
st
ar
ts

D
ow

nt
im

e
is

b
el
ow

1
m
in

12
F
ai
lu
re
(S
er
E
)/

In
s/
B
er

D
ur
in
g
w
ag

e
ca
lc
ul
at
io
n,

on
e

in
st
an

ce
no

t
av
ai
la
bl
e

C
al
cu

la
ti
on

co
rr
ec
t
an

d
in

ti
m
e

W
ag

e
ca
lc
ul
at
io
n
re
sp
on

se
ti
m
e
is

b
el
ow

2
s

T
ab

le
1:

Sc
en
ar
io
s
cr
ea
te
d
du

ri
ng

th
e
w
or
ks
ho

p

236 Frank et al.

The stakeholders elaborated 12 resilience scenarios, summarized in Table 1.
Scenarios 01 to 04 are different variations of an unexpected load peak, including
linear and exponentially increasing loads. Scenarios 05 and 06 describe the failure
of a single service instance. Scenarios 07 and 08 are about middleware failures.
Scenarios 09 and 10 revolve around gateway failures. Lastly, Scenarios 11 and 12
describe the failure of multiple instances. Actors such as end-users, elements of
the CF platform, different bugs, and technical issues caused by the middleware
or deployment artifacts and issues intrinsic to individual services of the system
comprise the established sources. In total, all scenarios can affect all services.
The environments cover different states of the system according to the identified
system domain context, e.g., payslip calculation periods or simply services being
non-idle independent of the different calculations. The response and response
measures were specified by the stakeholders based on their internal SLOs.

Retrospection: The brief retrospective at the end of the workshop showed that
the participants were satisfied with the agenda, content, and outcomes. However,
comments were made concerning time management.

3.3 Key Lessons Learned

After the workshop and the retrospective session, this section presents the key
lessons learned. For more details on each lesson, please refer to [11].

– Elicitation of resilience requirements involves hazard analysis.
– ATAM is a useful method to adopt resilience elicitation.
– Loose adoption of formalisms is already good enough.
– The workshop requires considerable refinement that can be done “offline”.
– A tightly planned one-day workshop is sufficient.
– The resilience elicitation helps to refine “classical” QoS requirements.

4 Chatbot-Based Elicitation and Specification

Although we tried to design the workshop (see Section 3) to be lightweight, its
execution still requires significant time and effort. We also noticed that some of
the elicited scenarios, particularly their triggering conditions, are rather generic,
e.g., Scenarios 11 and 12 describe that a service terminates due to a service
failure. Therefore, we designed an approach called RESIRIO to complement
the workshop. RESIRIO aims to accelerate the elicitation of simple resilience
scenarios through automation and interaction with visualizations and chatbots.

Similar to the workshop sessions, the RESIRIO process consists of three
steps: architecture analysis, hazard analysis, and scenario creation. However,
the first two steps are fully automated. In the architecture analysis, RESIRIO
extracts the system’s architecture from Jaeger or Zipkin execution traces [23].
This analysis substitutes the workshop session for the architecture elicitation,
specification, and refinement. Since the fault tree analysis is difficult to automate,
RESIRIO applies a CHAZOP-like technique in the hazard analysis to identify

Elicitation of Resilience Scenarios Based on Hazard Analysis Techniques 237

1

2

3

Fig. 4: The graphical interface of the RESIRIO prototype

potential hazards and prioritize suggestions. Finally, in the scenario creation,
the architecture is visualized, and a chatbot assists the user in the specification
of concrete scenarios. The following sections detail these three steps.

We implemented the RESIRIO approach as a prototype. Figure 4 shows
the graphical interface of the prototype, which consists of the (1) architecture
graph, the (2) configuration view, and the (3) chatbot. Regarding the architec-
tural documentation, including architectural views, design decisions, and use of
technologies, please refer to the work by Zorn [30].

4.1 Architecture Analysis

Traces from Zipkin and Jaeger are the source of the architecture description for
two reasons: (1) there is an existing basis of literature and academic work and
(2) both frameworks are widely used in the industry and open-source projects.

To unify both representations of Zipkin and Jaeger into one format, we de-
veloped a generic meta-model for the system’s architecture. This model captures
the system’s services, operations, and dependencies. Individual parsers for Zipkin
and Jaeger transform the JSON-formatted traces into a representation described
by our meta-model. This method allows for an extension regarding other tracing
tools, given that the necessary parsers are implemented.

Since our data is relational, a graph is suitable for the representation. The
spans from a trace describe dependencies between services and are represented
by directed edges. The graph is visualized as node-link-diagram, as displayed in
Figure 4. It is extended with tooltips and a context menu for further inspection
of trace details. Once the graph is opened, it creates a list of available meta-
information. Nodes display names of processes and the endpoint information
(hostname and port). Edges display the spans’ execution details, such as the
duration of a call, logs, and tags. In addition, we apply a force-directed layout
and extended it with a zooming function and the option to drag the graph.

238 Frank et al.

Guide
Word

Description Operation Level
Effect

Service Level
Cause

NO No Information Response Time Spike*,
No Response

Service Failure*

MORE More data passed than
expected

Response Time
Deviation*

Decreased Service
Performance*, High Utilization

LESS Less data passed than
expected

Response Time
Deviation (harmless)

-

PART OF Information incomplete
(for group flows)

Failed Operation /
Exception

Software Bug, Service Failure,
API Change

REVERSE Flow of information in
wrong direction

Response Send To
Wrong Service

Software Bug

OTHER
THAN

Information complete,
but incorrect

Exception After
Operation Response

Software Bug, API Change

EARLY Data arrives earlier in a
sequence

One Operation Call
With Quick Response

(harmless)

-

LATE Data arrives later in a
sequence

One (Async) Operation
Call With Slow Response

Decreased Service Performance,
High Utilization

Table 2: Interpretations for the CHAZOPs guide words in the context of traces.
Entries marked with * are implemented in the prototype.

4.2 Hazard Analysis

We base our hazard analysis on CHAZOP [10] to automatically identify hazards,
generate suggestions, and prioritize services in the specification. CHAZOP is a
risk assessment technique. It requires iterating over all interconnections, data-
flows, and attributes in a system. Then, predefined guide words are interpreted,
and causes, consequences, and protection mechanisms are derived.

In our approach, we iterate over the dependencies in the graph. In a brain-
storming session, we interpreted the CHAZOP guide words. We did not explicitly
select particular data-flows or attributes but treated a dependency like a request.
Furthermore, we thought about how a deviation could be detected in traces on
the operation level. We considered the calling and called operation, the response
time, and the request status as known information. Next, we tried to identify the
deviations’ causes on the service level. For practical reasons, we did also consider
interpretations that did not fully match the guide words, e.g., we see a Response
Time Spike as interpretation for the guide word NO, since the complete absence
of a request cannot be detected from a trace alone. The (non-exhaustive) list of
interpretations from our brainstorming session can be found in Table 2.

For the prototypical implementation of RESIRIO, we selected two different
hazard types on the operation level (Response Time Deviation, Spike Response
Times) and two derived hazard types on the service level (Service Failure, De-
graded Service Performance). These hazard types can easily be detected by in-
specting response times in spans. We classify response times that deviate by
50% filtered by three times the standard deviation as Response Time Deviation.
Furthermore, a Response Time Spike denotes outliers in the response times. If a
hazard is detected in a service’s operation, the algorithm suggests Service Failure
as service hazard in case of Response Time Spike. For Response Time Deviation,
the algorithm suggests Decreased Service Performance on the service level.

The identified hazards are involved in the computation of a priority value.
The priority value depends on the number of incoming and outgoing edges and

Elicitation of Resilience Scenarios Based on Hazard Analysis Techniques 239

the number of hazards found in the architectural element. A service with many
connections to other services has a higher priority than services with fewer con-
nections. The priority of an edge is defined by the two services it connects. If
hazards are found in a service or operation during the analysis, the service’s
priority is multiplied by the number of found hazards. The resulting formula is
loosely based on the formula of the Risk Priority Number in Failure Modes and
Effects Analysis (FMEA) hazard analysis method [17].

In RESIRIO, the priority value is used in two different ways in the scenario
specification process: On the one hand, the chatbot suggests the five services
and five operations with the highest priority to the engineer. On the other hand,
each service and dependency in the graph representation is assigned a color from
white (low priority) to blue (high priority). The color palette is interpolated from
the lowest priority to the highest priority in the graph.

Instead of triggering deviations to the component’s parameter based on ex-
pert knowledge, we examine response times from previous executions of the
system to extract hazards. This kind of hazard analysis requires two prerequi-
sites. First, it is necessary that the system ran before and went into a hazardous
state. For some systems, this is not tolerable. Second, it requires that the hazard
type is defined in advance. Therefore, very system-specific hazards are usually
not detectable. We emphasize that the inspection of trace metrics and resulting
hazards provides resilience engineers only with suggestions. Resilience engineers
may still use their expertise to define custom stimuli types.

4.3 Scenario Creation

In order to enable the engineer to specify resilience scenarios, we present her
an architecture graph and a chatbot, as displayed in Figure 4. The chat follows
the design of a typical messenger interface and has three kinds of content types.
The user content (blue) is on the right side of the chat component. The left
side of the chat component contains the chatbot responses (yellow). Rich con-
tent guides the interaction and covers the middle of the chat content, rendering
Card Responses, Accordions, and Quick Replies. The architecture and chatbot
components are linked with each other, for example, selecting a service in the
architecture graph, will be interpreted by the chatbot as choice of an artifact in
the specification. Furthermore, the chatbot highlights the corresponding graph
artifact when choosing an artifact for the scenario specification.

The goal of the specification process is to output fully specified scenarios. Our
work extends the original resilience scenario with the parameters component,
normal availability, normal response times, normal response cases, and recovery
time. The artifact and the component are always used in combination with each
other. While the component describes a concrete service or operation name, the
artifact contains the type, e.g., whether a service or operation is selected. We
limit the use of the extended scenario structure to trace metrics in favor of a
more detailed scenario description. Thus, we divide the response measure further
into sub-parameters. A response measure for services has normal availability and
recovery time. The response measure for operations has normal response time,

240 Frank et al.

«Service»
Eureka

«Service»
API-Gateway

«Service»
payslip

«Service»
payslip2

Jollyday API

Fig. 5: Mocked Payroll Accounting System

normal response case, and recovery time. The parameters normal availability,
normal response time, and normal response cases describe a system’s normal
operation state. Quantitative measures are used to specify these parameters
(e.g., 100ms or 99%) that can easily be checked against runtime metrics of
the inspected system. If system metrics deviate from the given metrics of the
normal operation state, a return to the normal state is necessary. The recovery
time parameter describes the maximum tolerable time to return to the normal
state, also using a quantitative measure (e.g., 5 minutes, or 4 seconds).

The interaction concept is rather simple. The chatbot aims to elicit one
element of the extended scenario format in one step. For each step, the engineer
selects default responses, which are predefined or generated from the previous
analysis phases, or enters custom values. In a regular interaction, the chatbot first
encourages the engineer to select services or operations to determine the artifact
and component. Next, it proceeds with the description of the incident, followed
by the description of the desired system response. In the end, the scenario can
be edited or saved. In the latter case, the scenario appears in the configuration
view in a separate tab. This tab summarizes the responses and is equipped with
an export button that downloads the scenario in the JSON format.

5 Resilience Evaluation

This section aims to evaluate the resilience of the system under study. There-
fore, we implemented a subset of the previously elicited resilience scenarios into
resilience experiments using CTK. We compare the system’s behavior against
the expected behavior described in the scenarios’ response part.

5.1 Experiment Setup

Examined Software System Due to legal constraints and to maintain ano-
nymity, our industrial partner provided us with a mocked version as a proxy
for the real payroll accounting system. This version, shown in Figure 5, is used
throughout this paper as the system under test. It implements a similar business
logic but with less computational overhead. The system uses typical patterns
of the microservice architectural style, i.e., API-Gateway-service as a central
gateway that manages all incoming requests and Eureka [20] to provide service
discovery. The payslip-service utilizes an H2 in-memory database and the third-
party API Jollyday. It can forward requests to the payslip-service2 . Requests
can also be sent directly to payslip-service2 using a different endpoint.

The following six endpoints are used during the experiments:

Elicitation of Resilience Scenarios Based on Hazard Analysis Techniques 241

System Under
Test

Load-
generator InfluxDB

query
results

Hypothesis
Validation ChaosToolkit

execute experiment

write
 results

generate
load

retrieve
results

Load
Profile

Fig. 6: Used structure of the experiment framework

INTERNAL_DEP — Calls the payslip-service2 via payslip-service.
DB_READ — Reads an entry from the database of the payslip-service.
EXTERNAL_DEP — Calls the third-party API Jollydays via payslip-service.
DB_WRITE — Writes an entry into the database of the payslip-service.
GATEWAY_PING — Checks whether the API-Gateway-service responds.
UNAFF_SERVICE — Sends a request directly to payslip-service2 .

The actual payment accounting system is deployed to a paid CF. Due to
financial constraints and legal issues, the mock system is deployed to a local CF
environment [9], which has similar properties as a paid CF. As CF is a constraint
given by the stakeholders, we did not consider other cloud providers.

Experiment Tools Figure 6 shows our experiment framework comprising three
tools, i.e., CTK, load generator, and hypothesis validator. During an experiment,
these tools interact with the system to monitor the experiments and provide
detailed insights, e.g., response times of calls to individual endpoints.

To execute the experiments, we used CTK [8], which can execute and mon-
itor chaos tests and has drivers for various PaaS solutions. We leveraged the
CF driver to terminate a service instance at a specific point in time and vali-
date the steady-state hypothesis. The load that the system receives is controlled
by an adapted version of the load generator from the TeaStore microservices
benchmark [16] that monitors response times, number of successful, dropped,
and failed requests. The collected data is written into an InfluxDB [14]. During
the evaluation, a Spring service collects the data from the InfluxDB and calcu-
lates whether a hypothesis holds. We also created a dashboard application that
provides convenient features, like synchronized starting of CTK and the load gen-
erator, live monitoring, and automated CTK setup. Since the dashboard does
not add functionalities in executing experiments, it is not part of Figure 6.

5.2 Experiment Execution

Based on Scenarios 04 and 05, we implemented three resilience experiments.
The first experiment investigates a load peak with an exponential increase (Sce-
nario 04), while the remaining two investigate instance termination due to an
internal CF error for random instances (Scenario 05) and specifically the payslip-
service (Scenario 05’). The selection of experiments is based on the industrial
partner’s preferences. In all experiments, the effect on all endpoints is examined.
In the following, we will only discuss the results of a subset of endpoints for Sce-
nario 05’. The residual results can be found in the supplementary material [27].

242 Frank et al.

Target Service payslip-service
Experiment Type Terminate payslip-service application instance
Hypothesis Response measure of Scenario 05 holds
Blast Radius payslip-service

Table 3: Resilience experiment design for Scenario 05’
0

25
50

75
10

0

0
25

50
75

10
0

30
0

60
0

80
0

12
00

Experiment Duration (s)

R
es

po
ns

e
Ti

m
es

 (m
s) S

uccess R
ate (%

)

S04 Direct Run 1
ID 0 Response Times and Success Rate of

 HTTP Requests

(a) Without retry pattern

0
25

50
75

10
0

0
25

50
75

10
0

30
0

60
0

80
0

12
00

Experiment Duration (s)

R
es

po
ns

e
Ti

m
es

 (m
s) S

uccess R
ate (%

)

Success
Rate
Response
Times

Experiment
Phases

Steady
State
Injection

Recovery

S04 Direct Run 2
ID 0 Response Times and Success Rate of

 HTTP Requests

(b) With retry pattern

Fig. 7: Comparison of experiment results at endpoint INTERNAL_DEP

The design of the experiment related to Scenario 05’ is given in Table 3.
The target service of this experiment is the payslip-service, which holds the
core business logic of the mock system. We use CTK to terminate running CF
application instances to simulate the scenario’s stimulus. The stimulus refers to
an error that occurs in CF, which leads to a loss of an application instance.
We assume that the blast radius only affects the payslip-service and that CF
registers the loss of the payslip-service instance and starts a new instance. Our
hypothesis is that the response measure of Scenario 05 still holds.

During the experiments, the system is exposed to an almost constant, syn-
thetic load. We generated a load profile with a target load of 20 requests per
second and some noise. The requests are evenly distributed over all six endpoints.
To assess whether the system still responds correctly and in time, we measure
response times of the requests and compute their success rate.

5.3 Experiment Results

The measurements for endpoint INTERNAL_DEP are visualized in Figure 7a.
In the steady-state phase, we assume that the system is working as expected,
i.e., the response times satisfy the SLOs. In the injection phase, CTK terminates
the payslip-service instance. In the recovery phase, we assume that the system
returns to a steady state, i.e., the response times satisfy the SLOs. We omitted
the load generator’s warmup and cooldown phase due to readability and analysis
reasons, which refers to the overall first and last 300 s. Further, a 30 s binning
was applied, and extreme outliers (>100ms) are not shown.

The success rates at the endpoint INTERNAL_DEP (Figure 7a), DB_READ,
EXTERNAL_DEP, and DB_WRITE drop to 0% as the payslip-service is ter-
minated after 600 s and rises back to 100% as it recovers in about 1.5min. During
this downtime, no response times are recorded since no requests arrive at the
payslip-service. During the steady-state and recovery phase, the response times

Elicitation of Resilience Scenarios Based on Hazard Analysis Techniques 243

are stable at around 20ms and 15ms, respectively. During the injection phase,
there is a slight increase as the payslip-service has restarted.

5.4 Discussion of Results

As visible in Figure 7a, the response time and success rate values are almost
identical in the steady state phase and the recovery phase. Furthermore, the
increase in the success rate indicates that the payslip-service becomes available
after 30 s to 60 s. Thus, the CF platform can re-instantiate the payslip-service
quickly, leading to a quick recovery of the system.

Response times are slightly higher while the payslip-service is re-instantiated,
which was expected as normal cold-start behavior. Endpoints GATEWAY_PING
and UNAFF_SERVICE should remain unaffected during the injection because
the payslip-service is not required to answer the requests. Nevertheless, response
times at endpoint GATEWAY_PING are affected, which indicates a propaga-
tion of the failure effects from the payslip-service to the API-Gateway-service.

After the injection started, the success rate drops to 0% at the endpoints
INTERNAL_DEP, DB_READ, EXTERNAL_DEP, and DB_WRITE. The
CTK terminates the single payslip-service instance. The load generator flags all
requests as failed, leading to a success rate of 0%.

We hypothesized that the response measure of Scenario 05 holds, i.e., requests
are answered in time (99% in less than 1 s) and correctly. As the response times
are far below 1 s, our hypothesis regarding the response times is technically
fulfilled. However, several requests are not answered at all, which is indicated by
the dropped success rate. We consider these as incorrect response. Therefore, we
assume that the hypothesis regarding correctness is not fulfilled.

6 Resilience Improvement

The previous section’s experiments showed that the system does not respond as
described in Scenario 05 to a failure of an instance of the payslip-service. While
the response times are technically below 1 s in 99% of all cases, requests are tem-
porarily not answered at all. We consider that an incorrect response. Therefore,
we aim to improve the system’s success rate concerning Scenario 05 by apply-
ing resilience pattern(s). Resilience patterns [1] describe architectural changes
to enable applications to handle failures gracefully and recover from them. A
request may fail due to temporary failures in network components. Retrying
requests is one well-known resilience pattern, which provides a solution to the
problem of temporary failures within the application. Hence, we hypothesize
that adding retry improves overall system resilience. We determine the efficacy
of improvements to the system’s resilience by re-executing the experiments.

6.1 Architectural Modifications

The system under test was fortified with a retry pattern [22], i.e., the API-
Gateway-service sends another request to the payslip-service if a request fails or

244 Frank et al.

Steady State Injection Recovery
w/o Pattern w Pattern w/o Pattern w Pattern w/o Pattern w Pattern

Endpoint p5 x̃ x p99 p5 x̃ x p99 p5 x̃ x p99 p5 x̃ x p99 p5 x̃ x p99 p5 x̃ x p99
INTERNAL_DEP 19 22 22.5 33 19 22 24.0 51 19 21 22.4 32 19 22 24.6 90 19 21 22.1 31 19 22 23.0 34

DB_READ 11 12 13.3 21 11 12 13.0 24 11 12 13.1 20 11 12 13.2 30 11 12 12.9 20 11 12 12.8 19
EXTERNAL_DEP 11 12 12.6 21 10 12 13.3 23 11 12 12.5 21 10 12 14.1 31 11 12 12.3 19 10 12 12.2 19

DB_WRITE 11 13 13.4 21 11 12 13.1 22 11 12 13.1 20 11 12 13.3 27 11 12 13.0 20 11 12 12.7 19
GATEWAY_PING 11 12 13.3 21 11 12 13.3 24 11 12 13.1 20 11 12 13.6 32 11 12 12.9 19 11 12 12.9 21
UNAFF_SERVICE 10 11 11.9 19 10 11 11.6 19 10 11 11.7 18 10 11 11.6 19 10 11 11.8 18 10 11 11.5 19

Table 4: Statistical summaries of the three experiment phases. pα: α-th per-
centile; x̃: median; and x: mean. Values are given in ms.

remains unanswered. The retry pattern seems to be a reasonable choice since
response times are far below the threshold of 1 s, as indicated by the previous
experiment. Due to its specific purpose, the system has to accept requests near
real-time and always answer correctly. Thus, resilience patterns that rely on
backup or restricting behavior, like circuit breakers or flow limiters, are unsuited.
To avoid bad retry behavior, we configured the Spring-Retry as follows. We set
the maximum number of retries of each payslip-service request to be 4, the initial
delay to 10ms, the factor for the exponential increase to 3, and the maximum
delay to 150ms—resulting in retries after 10ms, 30ms, 90ms, and 150ms.

6.2 Experiment Results and Discussion

Figure 7b visualizes the system’s response times and success rates with the retry
pattern for endpoint INTERNAL_DEP. Table 4 shows the associated statistical
values. In general, similar behavior can be observed at all the endpoints. Com-
paring the plots of Figure 7 shows that the mean response times in the steady
state phase do not vary significantly when the retry pattern is added. Although,
at the beginning of the injection phase, far more high response times can be
observed. In addition, the boxplots show a slightly higher interquartile range in
the plot where the retry pattern is integrated.

The plots also show that the success rate does not drop to zero anymore with
the active pattern. For endpoint INTERNAL_DEP, the success rate drops to ap-
proximately 70%. For the endpoints GATEWAY_PING and UNAFF_SERVICE,
the success rate remains at 100%. The two endpoints do not depend on the
payslip-service, which explains the high success rate at these endpoints.

The application of the retry pattern can explain the response time spikes
during the injection (see the Figure 7). Requests sent shortly before the restart
of the payslip-service fail, but are retried by the API-Gateway-service until the
payslip-service recovered after approximately 10 s. However, as several retries
have been aggregated, the payslip-service has to handle a high amount of requests
upon recovery, resulting in a visible spike in response times.

In contrast to the system without the retry pattern, the success rate drops
less. Thus, the retry pattern improves the scenario satisfaction as it increases
the percentage of correct responses while the response times stays below 1 s.

Elicitation of Resilience Scenarios Based on Hazard Analysis Techniques 245

7 RESIRIO User Study

To evaluate the developed prototype on usability and effectiveness, we designed
an expert user study. In the following, we give an overview of the procedure and
results. Artifact and more results can be found in the supplementary material.
The user study aimed to get feedback from inexperienced engineers and experts.
Separate research question and hypotheses are investigated. The goal is to ac-
cept a hypothesis Hx1 by rejecting the corresponding null-hypothesis Hx0. The
research questions and derived hypotheses are:

– RQ1: Are users of RESIRIO able to create resilience scenarios successfully?
– H11: Study participants can complete the study tasks successfully.

– RQ2: How effective is RESIRIO compared to traditional elicitation processes?
– H21: Study participants create ATAM-based scenarios faster with RESIRIO
than with a traditional approach, e.g., the workshop.

– RQ3: How supportive is RESIRIO during the elicitation process?
– H3a1: RESIRIO supports inexperienced engineers in the elicitation process.
– H3b1: RESIRIO supports experienced engineers in the elicitation process.

– RQ4: How usable are ATAM-based scenarios created with RESIRIO for re-
silience assessment?
– H41: RESIRIO’s scenarios can be used for system resilience assessment.

7.1 Design and Methodology

We perform a qualitative study, since there is a limited number of domain experts
for scenario-based resilience engineering. The study has three different strategies
to collect feedback. First, subjective feedback is collected through interview-style
and open-ended questions. Secondly, the prototype measures metrics like the du-
ration of the study, the number and type of interactions, interactions with fea-
tures besides the chatbot, and the number of elicited scenarios. To support the
measurement of effectiveness and the quality of the prototype, we include close-
ended questions. Finally, usability is measured based on a Likert scale from ques-
tions as suggested by Brooke [4] in the System Usability Study. If participants
have a particular interest in a feature or make suggestions for improvements, the
study conductor asked additional questions to get more insights.

We created two tasks. At the beginning of each task, the participants are
given a general description of the inspected system, which introduces a failure
to the system. In each task, an ATAM-based scenario to fix the failure needs to
be created. In the first task, which was considered beginner-friendly, we present
a predefined solution. The only challenge in this task is to create the scenario
through the use of the chatbot. Additionally, it is possible to create the resilience
scenario only with the use of Quick Replies. The second is designed to be more
challenging. On the one hand, the correct solution was not shown to the partic-
ipants. On the other hand, the task description contains names of services and
operations that are not available through Quick Replies. The absence of Quick
Replies requires participants to use the architecture graph and the text input.

246 Frank et al.

7.2 Study Execution

We invited participants from the industry and academia for the evaluation. Five
employees from the industry company did take part in the study: two software
architects, one DevOps Engineer, one quality assurance engineer, and one doc-
toral researcher. Four participants already participated in the workshop. Three
participants are considered experts of the system since they were involved in its
development. The system is the industrial system as described in Section 3.2.
We also requested the participation of researchers familiar with the Train Ticket
system [29]. Seven researchers agreed to participate. Four participants are con-
sidered experts of the system since they were involved in its development.

We informed the participants beforehand that the study takes place virtually
and requires approximately 45-60 minutes to complete. After their verbal agree-
ment to the consent form, they were sent the task description. In the first part,
the goal and purpose of the study are given. In the second part, the prototype is
introduced. The third part contains the actual tasks fitted to each system. After
the participants read the first two parts of the task description, they were given a
link to the prototype. The participants were encouraged to describe their actions
with the prototype, which was done in most cases. The study conductor stayed
passive and just reminded the participants to carefully reread the task descrip-
tion, which resolved the problems in all cases. After completing the practical
part, the study conductor started a verbal conversation with the participants
and asked them about noticeable events during the practical part. Examples
of noticeable events were not using the chatbot text interactions or creating a
new scenario from the beginning. These questions usually led to a discussion
with open-ended questions. After all noticeable events were covered, the study
conductor asked the participants to fill out the questionnaire.

7.3 Results and Discussion

All participants claimed that they completed the given tasks successfully. The
questionnaire confirms that the first task was perceived easier than the second
task (see Figure 8d), as intended. We created a set of solutions for the more com-
plex second task before the study was executed. In the evaluation, we compared
the elicited scenarios of the participants with the prepared solutions. Overall, six
participants had to reconfigure the parameters of a scenario because they were
not satisfied with their initially chosen parameters, or the chatbot did not assign
the specified parameters as intended. Three of the 24 final scenarios contained
invalid parameters. Therefore, H10 is rejected, and H11 can be accepted.

The fastest participant used 7 minutes to complete both tasks, while the
slowest used more than 24 minutes. The median lies at approx. 16 minutes. Al-
though the second task is the difficult task, recordings indicate an approximated
median of only five minutes to complete the second task. This can be ascribed
to the learning effect that users had for solving the first task. The workshop re-
quired several participants to elicit 12 scenarios over a working day. In contrast
to that, a single person can elicit a scenario within 5 minutes after little training.

Elicitation of Resilience Scenarios Based on Hazard Analysis Techniques 247

Task 1
Task 2

1
(less difficult)

2 3 4 5
(more difficult)

0

2

4

6

0

2

4

6

of

 S
am

pl
es

(a) How challenging was it to
solve the tasks?

0

1

2

3

4

5

6

7

8

9

of

 S
am

pl
es

No Yes

(b) Enough assis-
tance during the
elicitation?

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

of

 In
te

ra
ct

io
ns

Text Quick Reply

(c) Type of interactions
during the study?

0

1

2

3

4

5

6

7

8

of

 S
am

pl
es

No Yes

(d) Enough infor-
mation to test
resilience?

Fig. 8: Results from questions and measurements of the user study.

Therefore, H20 is rejected, and H21 can be accepted. Three participants did not
agree with this conclusion. However, all participants who had previously taken
part in the workshop confirmed our conclusion.

Six participants got stuck during the elicitation process, but three of them
could return to the conversation without the help of the Chatbot Reset function-
ality. Nevertheless, most of the participants agreed that they were provided with
enough assistance (see Figure 8c). Additionally, the results of the System Us-
ability Study confirmed that RESIRIO (i) was perceived as easy to use, (ii) does
not require too much knowledge to use, and (iii) has well-integrated features.

A significant finding is an overall preference of using Quick Replies over the
use of text interactions (see Figure 8b), which is an explanation for the quick
elicitation. While six participants did not use text interactions, the other six
used only three to thirteen text interactions. Quick Replies were the prototype’s
most used and liked feature, followed by the Architecture Graph. Two partici-
pants requested general documentation of the prototype and wanted to see all
the available functionalities of the prototype. Other suggestions for improve-
ments were more Quick Replies, role assignment (i.e., software architect, testing
engineer), and displaying the scenario at all times. In general, experts responded
with more critical feedback. While they were happy with the prototype’s usabil-
ity, they stated that features were missing to highlight details of a scenario and
give more insights into the technical background of the analysis process. There-
fore, H3a1 can be accepted and H3a0 is rejected. However, we can not reject H3b0

for the current state of the approach based on the experts’ feedback.

Overall, most participants agreed that the elicited scenarios are sufficient to
test a system’s resilience (see Figure 8a). For this reason, we accept H41 and
reject H40. However, especially the experts noted that the available options for
stimuli and responses as too limited to create usable scenarios in practice. Half
of the participants agreed that more quick replies are necessary.

248 Frank et al.

7.4 Key Lessons Learned

This section presents the key lessons learned from the user study.

– Engineering teams in traditional elicitation processes such as workshops are
concerned about the documentation process. Automated interactive tooling
such as RESIRIO address that concern.

– The tendency to interact through the architecture graph and quick replies is
higher than having time-consuming conversations with a chatbot.

– Chatbot-assisted tooling such as RESIRIO, which involves interaction between
one person and a chatbot, does not replace traditional elicitation processes
because traditional methods involve discussions between people, leading to
more coverage of stimuli and response measures.

8 Related Work

We explored (1) the usage of the scenario-based ATAM and established hazard
analysis techniques for interactive resilience requirement elicitation and (2) test-
ing through resilience experiments for architecture assessment and improvement.
This section classifies research areas and existing works close to us.

8.1 Measurement-Based Resilience Evaluation

A workshop is an effective technique for requirement elicitation [24]. In our case,
the workshop’s preparation and conduction are based on the scenario template of
Bass et al. [3]. Our difference to existing works on measurement-based resilience
evaluation is that we have an explicit step on eliciting resilience requirements.
In the next paragraphs, we elaborate on this in more detail.

Cámara et al. [5,6,7] propose an approach for resilience analysis of self-
adaptive systems. The core idea consists of three parts: (1) specification of re-
silience properties using Probabilistic Computation Tree Logic, (2) modeling
causes of a hazard, e.g., high-load using experimentation and collecting traces of
system behavior, and (3) verification of resilience properties using model check-
ing. In contrast to model checking-based verification, we evaluate a scenario’s
response measure by analyzing measurements. Furthermore, Cámara et al. do
not focus on the elicitation of resilience requirements.

In Chaos Engineering [2,18], system resilience is evaluated through failure in-
jection [19]. There are works on both (1) using engineering methods to identify
failure modes [15], i.e., causes of a hazard systematically before failure injec-
tion, and (2) ad-hoc failure injection with no systematic failure mode identifi-
cation [13]. However, they do not explicitly specify resilience requirements and
lack a methodical way for requirement elicitation. Our work is a step toward
closing this gap.

In the context of resilience requirement elicitation, Yin et al. [28] propose a
goal-oriented technique for representing resilience requirements. The high-level

Elicitation of Resilience Scenarios Based on Hazard Analysis Techniques 249

idea is to represent a resilience goal—e.g., all requests are processed correctly—
and identify possible causes of hazards that act as obstacles for achieving a
resilience goal—e.g., node failure. However, they do not discuss how to identify
hazards and their causes. Goal orientation and developing scenarios are two
activities in requirements engineering [24] that benefit the elicitation process.
According to Pohl [24], scenario development benefits elicitation by making goals
understandable for stakeholders and may refine or identify new goals. Our work
uses scenario development without goal-oriented modeling as all stakeholders
know the system’s high-level quality goal.

To our knowledge, this is the first work using ATAM for eliciting and specify-
ing resilience requirements before evaluating the resilience through experiments.

8.2 Chatbot-based Requirements Elicitation

Rietz [26] proposes a conversational interface called chatbot for requirements
elicitation, which is applicable for novice users in requirements engineering. The
core idea is to guide users in the elicitation process by asking questions from
abstract to more precisely. The user interaction, including questions and answers,
is stored in a knowledge base for later re-use and interaction improvements.

Friesen et al. [12] proposed the CORDULA approach. Users of the approach
need to use special text format to interact with the chatbot, which identifies
domain concepts and imprecise statements such as a big file. Afterward, in a sep-
arate debugging window, users can edit the specification. In contrast to previous
works, we use the structured template of ATAM for requirements specification.
In addition, we use architecture visualization and hazard analysis techniques to
guide the users in the elicitation process.

The work by Surana et al. [25] allows users to elicit and classify requirements
as functional or non-functional requirements. The authors benefit from machine
learning algorithms for the elicitation and classification tasks. However, the chat-
bot expects users’ familiarity with the system’s requirements and is more usable
for classification tasks than the elicitation process.

9 Threats to Validity

9.1 Workshop

Conclusion validity One threat is the reliability of measures, which means
repeating the workshop yields the same resilience requirements list. Elicitation
of resilience requirements involves human judgment. Hence, it is a subjective
measure. Therefore, we can not entirely rule out this threat.

Internal validity One threat is instrumentation, which means our tools and
techniques were not suitable. We conducted a one-day structured workshop and
used the scenario template of Bass et al. [3] for eliciting resilience requirements.
We refined all the resilience requirements through several iterations after the
workshop and validated them against the workshop participants.

250 Frank et al.

Construct validity For us, the main threat in this category is mono-method
bias, which means we did not use other elicitation methods. Therefore, there is
a threat that elicited resilience requirements are biased. We can not entirely rule
out this threat as we did not apply other methods and cross-check the results.

External validity The heterogeneity poses a threat, i.e., different roles and
expertise of participants. Workshops with less heterogeneity in the stakeholders
could lead to no resilience requirements. We can not entirely rule out this threat.
Although our study is based on a microservice architectural style, we argue that
our approach of resilience requirements elicitation is independent of the architec-
ture style. The important is eliciting resilience requirements and understanding
design decisions that satisfy the requirements.

9.2 RESIRIO User Study

Conclusion validity As most questions asked during the study were open-
ended, and of qualitative nature, it is hard to prove whether our conclusions
are correct. The number of participants was limited, resulting in ambiguous
conclusions from measurements and general uncertainty in the evaluation.

Internal validity The target group consisted of participants with different
levels of experience. The knowledge of the participants is hard to compare. Four
participants had previously seen the prototype in a demonstration. Although
they did not use the prototype, some transfer of knowledge might have happened.

Construct validity The comparison of RESIRIO’s efficiency to traditional
elicitation processes is limited for the lack of existing measurements. We do not
think that values extracted from experience reports and other literature reviews
provide a good enough basis for a thorough comparison. Feedback from users is
always subjective. They could, for example, not be able to judge whether created
scenarios can be used for a specification in practice.

External validity Participants came from the same institutions and compa-
nies, complicating the generalization of results in surroundings that are different
from those found in the participants’ environments.

9.3 Experiment Design

We used the mock system for quantitative evaluation of resilience requirements
that are based on the actual system. There is a threat that evaluation results are
inaccurate. However, the purpose of the experiments is to exemplary show how
elicited requirements and derived experiments can help to improve the system—
we do not claim the accuracy of the quantitative results. Furthermore, due to
legal issues, we used CF Dev [9]. We faced instability, e.g., resource drainage of
Dev nodes, in the environment during experimentation. There is a threat of a
negative impact on results due to this instability. To counteract this threat, we re-
executed experiments to gain insight into approximate measurements, ensuring
reliable data with no unintended node or service crash.

Elicitation of Resilience Scenarios Based on Hazard Analysis Techniques 251

10 Conclusion

The successful development of resilience scenarios depends on the outcome of the
hazard analysis. Our workshop approach to scenario-based resilience evaluation
assumes business domain experts to derive an initial list of hazards. FTA can
then be a means to analyze the hazards and derive resilience scenarios. Our semi-
automated approach RESIRIO is a means for quicker and easier elicitation of
such scenarios, but it can not fully replace the workshop. We plan to (1) extend
our process with an explicit formalization step after the elicitation for refinement
of the scenarios, (2) formally verify response measures of resilience scenarios, and
(3) create processes for continuous hazard analysis when a system faces changes,
e.g., updates and refinement/development of resilience scenarios.

Acknowledgment This work has been supported by the Baden-Württemberg
Stiftung (ORCAS—Efficient Resilience Benchmarking of Microservice Architec-
tures) and the German Federal Ministry of Education and Research (dqualizer
and Software Campus 2.0—Microproject: DiSpel).
Data Availability Our artifacts [27] comprise (i) the resilience scenarios, (ii) the
RESIRIO project and user study documents, and (iii) the data and R scripts as
a CodeOcean capsule. We are working on making parts of the created/modified
experiment tools available as open-source software. For confidentiality reasons,
the system under test cannot be published.

References

1. Microsoft Azure (2021), https://docs.microsoft.com/en-us/azure/architecture/
framework/resiliency/reliability-patterns

2. Basiri, A., Behnam, N., de Rooij, R., Hochstein, L., Kosewski, L., Reynolds, J.,
Rosenthal, C.: Chaos Engineering. IEEE Softw. 33(3), 35–41 (2016)

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley Longman Publishing Co., Inc., USA, 4 edn. (2021)

4. Brooke, J.: SUS: a ’quick and dirty’ usability scale. Usability evaluation in industry
189 (1996)

5. Cámara, J., de Lemos, R.: Evaluation of resilience in self-adaptive systems using
probabilistic model-checking. In: Proc. 7th Int. Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems (SEAMS). pp. 53–62 (2012)

6. Cámara, J., de Lemos, R., Laranjeiro, N., Ventura, R., Vieira, M.: Robustness-
driven resilience evaluation of self-adaptive software systems. IEEE Transactions
on Dependable and Secure Computing 14(1), 50–64 (2017)

7. Cámara, J., de Lemos, R., Vieira, M., Almeida, R., Ventura, R.: Architecture-based
resilience evaluation for self-adaptive systems. Computing 95(8), 689–722 (2013)

8. Chaos Toolkit: Chaos Toolkit (2020), https://chaostoolkit.org
9. Cloud Foundry Foundation: Cloud Foundry dev documentation (2020), https://

github.com/cloudfoundry-incubator/cfdev
10. Dunjó, J., Fthenakis, V., Vílchez, J.A., Arnaldos, J.: Hazard and operability (HA-

ZOP) analysis. A literature review. Journal of hazardous materials 173(1-3), 19–32
(2010)

https://docs.microsoft.com/en-us/azure/architecture/framework/resiliency/reliability-patterns
https://docs.microsoft.com/en-us/azure/architecture/framework/resiliency/reliability-patterns
https://chaostoolkit.org
https://github.com/cloudfoundry-incubator/cfdev
https://github.com/cloudfoundry-incubator/cfdev

252 Frank et al.

11. Frank, S., Hakamian, M.A., Wagner, L., Kesim, D., von Kistowski, J., van Hoorn,
A.: Scenario-based resilience evaluation and improvement of microservice architec-
tures: An experience report. In: ECSA 2021 Companion Volume. vol. 2978 (2021)

12. Friesen, E., Bäumer, F.S., Geierhos, M.: CORDULA: software requirements ex-
traction utilizing chatbot as communication interface. In: Joint Proceedings of
REFSQ-2018 Workshops (2018)

13. Heorhiadi, V., Rajagopalan, S., Jamjoom, H., Reiter, M.K., Sekar, V.: Gremlin:
Systematic resilience testing of microservices. In: Proc. 36th IEEE Int. Conf. on
Distributed Computing Systems (ICDCS). pp. 57–66 (2016)

14. InfluxData Inc.: InfluxDB website (2020), https://www.influxdata.com/
15. Kesim, D., van Hoorn, A., Frank, S., Häussler, M.: Identifying and prioritizing

chaos experiments by using established risk analysis techniques. In: Proc. 31st Int.
Symposium on Software Reliability Engineering (ISSRE) (2020)

16. von Kistowski, J., Eismann, S., et al.: Teastore: A micro-service reference appli-
cation for benchmarking, modeling and resource management research. In: Proc.
MASCOTS. pp. 223–236 (2018)

17. Leveson, N.G.: Safeware — System Safety and Computers: A Guide to Preventing
Accidents and Losses Caused by Technology. Addison-Wesley (1995)

18. Miles, R.: Learning Chaos Engineering – Discovering and Overcoming System
Weaknesses through Experimentation. O’Reilly Media, Inc. (2019)

19. Natella, R., Cotroneo, D., Madeira, H.: Assessing dependability with software fault
injection: A survey. ACM Computing Surveys (CSUR) 48(3), 44:1–44:55 (2016)

20. Netflix Inc.: Eureka (2020), https://github.com/Netflix/eureka
21. Newman, S.: Building Microservices. O’Reilly (2015)
22. Nygard, M.T.: Release It!: Design and Deploy Production-ready Software. Prag-

matic Bookshelf (2018)
23. Okanovic, D., et al.: Towards performance tooling interoperability: An open for-

mat for representing execution traces. In: 13th European Performance Engineering
Workshop (EPEW). vol. 9951, pp. 94–108 (2016)

24. Pohl, K.: Requirements Engineering - Fundamentals, Principles, and Techniques.
Springer (2010)

25. Rajender Kumar Surana, C.S., Shriya, Gupta, D.B., Shankar, S.P.: Intelligent chat-
bot for requirements elicitation and classification. In: 2019 4th International Con-
ference on Recent Trends on Electronics, Information, Communication & Technol-
ogy (RTEICT). pp. 866–870. IEEE (2019)

26. Rietz, T.: Designing a conversational requirements elicitation system for end-users.
In: 2019 IEEE 27th International Requirements Engineering Conference (RE). pp.
452–457. IEEE (2019)

27. S. Frank et al.: Supplementary material (2022), https://doi.org/10.5281/zenodo.
6077724; Code Ocean capsule: https://doi.org/10.24433/CO.0520280.v1

28. Yin, K., Du, Q., Wang, W., Qiu, J., Xu, J.: On representing and eliciting resilience
requirements of microservice architecture systems. CoRR abs/1909.13096 (2020),
https://arxiv.org/abs/1909.13096v3

29. Zhou, X., et al.: Latent error prediction and fault localization for microservice ap-
plications by learning from system trace logs. In: Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering. pp. 683–694. ACM (2019)

30. Zorn, C.: Interactive elicitation of resilience scenarios in microservice architectures.
Master’s thesis, University of Stuttgart (2021)

https://www.influxdata.com/
https://github.com/Netflix/eureka
https://doi.org/10.5281/zenodo.6077724
https://doi.org/10.5281/zenodo.6077724
https://doi.org/10.24433/CO.0520280.v1
https://arxiv.org/abs/1909.13096v3

	Interactive Elicitation of Resilience Scenarios Based on Hazard Analysis Techniques

